
www.manaraa.com

i

An Adaptive Bit-Level Text
Compression Scheme Based on the

HCDC Algorithm

(بالاعتماد على الخوارزمية Bitاسلوب تكيُّفي لضغط البيانات النصية بمستوى)
(HCDC)

By

Ahmad Rababa’a

Supervisor

Dr. Hussein Al-Bahadili

This thesis is submitted to the Department of Computer

Science, Graduate College of Computing Studies, Amman Arab

University for Graduate Studies in partial fulfilment of the

requirement for the degree of Master of Science in Computer

Science.

Graduate College of Computing Studies

Amman Arab University for Graduate Studies
 (Jul, 2008)

www.manaraa.com

ii

Authorization

www.manaraa.com

iii

www.manaraa.com

iv

Abstract

This thesis is concerned with the development and performance

evaluation of a new adaptive bit-level text compression scheme that

is based on the Hamming Codes Data Compression (HCDC)

algorithm. The HCDC algorithm is a lossless binary (bit-level) data

compression algorithm that utilizes the well-known error correcting

Hamming codes.

The new scheme consists of six steps some of which are applied

repetitively to enhance the compression ratio. The repetition loops

continue until inflation is detected. The overall (accumulated)

compression ratio is the multiplication of the compression ratios of the

individual loops, therefore we refer to this new scheme as HCDC(k),

where k refers to the number of repetition loops.

In the HCDC(k) scheme, a new adaptive text-to-binary coding format

was developed and used. This method of coding reduces the entropy

of the generated binary sequence so that it grants higher compression

ratio.

The HCDC(k) scheme was implemented in C++ programming

language; and used to compress a number of text files from standard

corpora. The results obtained demonstrate that the HCDC(k) scheme

www.manaraa.com

v

has higher compression ratio than most well-known text compression

algorithms, and also exhibits a competitive performance with respect

to many widely-used state-of-the-art software. Finally, the results

obtained are discussed, conclusions are drawn, and

recommendations for future work are pointed-out.

www.manaraa.com

vi

ARABIC SUMMARY
 الملخَّص

 (Bit)لاطروحة معنيَّة بتطوير وتقييم اداء خطة تكيُّفية جديدة لضغظ البيانات النصية بمستوى أن هذة ا

هي خوارزمية لضغظ البيانات (HCDC). الخوارزمية (HCDC)والتي تعتمد على الخوارزمية المسماة

 .صحيح الاخطاءلت (Hamming)في النظام الثنائي دون خسارة للبيانات والتي تستخدم ترميز (Bit) بمستوى

 ،هذة الخطة الجديدة تتكون من ستة خطوات، البعض منها تطبق بشكل متكرر لتحسين نسبة الضغط

يستمرهذا التكرار لحين تحسس التضخم. تكون نسبة الضغط الاجمالية) التراكمية (هي حاصل ضرب

تدل kحيث HCDC(k)نسب الضغط في كل عملية تكرار منفردة، لذلك يتم الاشارة لهذة الخطة بأسم

 عدد مرات التكرار. على

تم تطوير صيغة تكيُّفية جديدة لتشفير النص لبيانات ثنائية ، هذة الطريقة تقلل HCDC(k)في الخطة

 للتسلسل الثنائي المتولد وبالتالي يمنح نسبة ضغط اعلى. (Entropy)من ال

تُخدمت البرمجية لضغط عدد من الملفات وأس ++C بأستخدام لغة البرمجةHCDC(k) تم برمجة الخطة

 القياسية. Corporaالنصية من مجموعة

تبينن النتائج أن هذة الخطة توفر نسبة ضغط اعلى من معظم خوارزميات ضغط النص المعروفة وتعرض

ائج تأداء منافس مقارنة مع الكثير من البرمجيات الواسعة الانتشار. اخيرا نوقشت النتائج وتم الخروج بالن

 وذكربعض التوصيات للعمل المستقبلي.

www.manaraa.com

vii

Acknowledgment

I would like to specially thank my supervisor Dr. Hussein Al-Bahadili,

who taught me every thing that I know about research and the way it

should be done. I would like to thank him for his guidance during all

stages of this research, for answering endless questions, for his great

support, professional advice, and profound understanding. Through

this work, Dr. Hussein has shown me how to attack a problem from

different angels, how to approach it, and how to find the most suitable

solution.

I also would like to thank all members of staff at Amman Arab

University for Graduate Studies, in particular, the members of staff at

the Graduate College of Computing Studies.

Finally, it would be unthinkable of me not to thank my parents, wife,

children, brothers and friends for their support and encouragement

over the years. I am thankful for anyone who supported me during

my study towards the Master.

www.manaraa.com

viii

Table of Contents

Authorization ... II

abstract .. IV

arabic summary .. VI

acknowledgment ... VII

table of contents ... VIII

list of tables .. XI

list of figures ... XIII

abbreviations .. XVI

chapter one introduction ... 1

1.1. DEFINITION OF DATA COMPRESSION 1
1.2. CATEGORIZATION OF DATA COMPRESSION ALGORITHMS .. 4
1.2.1DATA COMPRESSION FIDELITY .. 4
1.2.2LENGTH OF DATA COMPRESSION SYMBOLS 7
1.2.3 DATA COMPRESSION SYMBOL TABLES 7
1.2.4 DATA COMPRESSION COST .. 10
1.3. DATA COMPRESSION MODELS 12
1.4. TEXT COMPRESSION ... 14
1.4.1 SYLLABLES AND WORDS BASED TEXT COMPRESSION 14
1.4.2 BIT-LEVEL TEXT COMPRESSION 15
1.5. PERFORMANCE EVALUATION PARAMETERS 17
1.5.1 MEASURING THE AMOUNT OF COMPRESSION 18
1.5.2 PROCESSING TIME .. 21
1.6. STATEMENT OF THE PROBLEM 23
1.7. ORGANIZATION OF THE THESIS 24

chapter two literature review ... 26

2.1.BIT-LEVEL TEXT COMPRESSION ALGORITHMS 27

www.manaraa.com

ix

2.2. SYLLABLE AND WORD BASED TEXT COMPRESSION

ALGORITHMS .. 36
3.1. ENTROPY OF ENGLISH TEXT .. 48
3.2.THE ADAPTIVE CHARACTER CODING FORMAT 53
3.3. CONCEPTS OF BIT-LEVEL DATA COMPRESSION ALGORITHMS

 .. 56
3.4. THE HCDC ALGORITHM .. 58
3.4.1DERIVATION AND ANALYSIS OF HCDC ALGORITHM

COMPRESSION RATIO 65
3.5. THE HCDC (K) SCHEME ... 73
3.6 THE COMPRESSED FILE HEADER 79

chapter four experimental results and discussions 84

4.1 EXPERIMENT #1: INVESTIGATING THE EFFECT OF THE

CHARACTER CODING FORMAT 85
4.2. EXPERIMENT #2: EVALUATING THE COMPRESSION RATIO OF

THE HCDC (K) SCHEME OVER A NUMBER OF

TEXT FILES FROM STANDARD CORPORA 91
4.3.EXPERIMENT # 3:COMPARING THE COMPRESSION RATIO OF

THE HCDC(K) SCHEME WITH A NUMBER OF

DATA COMPRESSION ALGORITHMS 96
4.4. EXPERIMENT #4: COMPARING THE COMPRESSION RATIO OF

THE HCDC (K) SCHEME WITH ADAPTIVE

ALGORITHMS .. 98
4.5. EXPERIMENT #5:COMPARING COMPRESSION RATIO OF THE

HCDC (K) SCHEME WITH A NUMBER OF WIDELY-
USED PROGRAMS 101

chapter five conclusions and recommendations for future
work ... 105

www.manaraa.com

x

5.1. CONCLUSIONS ... 105
5.2. RECOMMENDATIONS FOR FUTURE WORK 108

references ... 109

appendices .. 116

www.manaraa.com

xi

List of Tables

Table Title Page

3.1
Information content of the English text using
different approaches.

40

3.2
Information content of the English text using
different standard software.

41

3.3
Lossless compression ratios for text
compression Calgary corpus.

42

3.4
ASCII and adaptive codes of the 10 most
common characters in paper1 text file.

45

3.5

Entropies of the binary sequences
generated for a number of text files from the
Calgary corpus using different coding
formats.

46

3.6
Variation of Cmin, Cmax, and r1 with number
of parity bits (p).

56

3.7
Variations of C with respect to r for various
values of p.

57

3.8 Valid 7-bit codewords. 58

3.9 HCDC(k) scheme compressed file header. 68

4.1
The HCDC(k) scheme compression ratio
achieved for paper1 file using ASCII and
adaptive character coding formats.

72

4.2
The HCDC(k) scheme compression ratio
achieved for book1 file using ASCII and
adaptive character coding formats.

73

www.manaraa.com

xii

Table Title Page

4.3
Comparison between C1 and Ck for a
number of text files from the Calgary
corpus.

76

4.4

Comparison between the compression
ratio of the HCDC(k) scheme and various
statistical and bit-level data compression
algorithms.

78

4.5
Comparison of the compression ratio of
HCDC(k) scheme with various adaptive
data compression algorithms.

81

4.6
Comparison of the coding rate (Cr) in bpc
between the HCDC(k) scheme and various
standard programs.

84

A.1 Calgary Corpus. A-3

A.2 Canterbury Corpus. A-4

A.3 Artificial Corpus. A-5

A.4 Large Corpus. A-6

A.5 The Miscellaneous Corpus. A-7

www.manaraa.com

xiii

List of Figures

Figure Title Page

3.1
Locations of data and parity bits in 7-bit codeword

50

3.2
The main steps of the HCDC compressor.

51

3.3
The main steps of the HCDC decompressor.

52

3.4
Variation of Cmin and Cmax with p.

56

3.5
Variation of r1 with p.

57

3.6
Variations of C with respect to r for various values of p.

58

3.7 The flowchart of the HCDC(k) Scheme 61

www.manaraa.com

xiv

3.8
The compressed file header of the HCDC(k) scheme.

68

4.1
Comparison of Ck for ASCII and adaptive coding formats for
paper1 file.

73

4.2
Comparison of Ck for ASCII and adaptive coding formats for
book1 file.

74

4.3

Comparison between C1 and Ck for a number of text files
from the Calgary corpus.

77

4.4

Comparison between C1 and Ck for a number of text files
from the Canterbury, Artificial, and Large corpora.

77

www.manaraa.com

xv

Figure Title Page

4.5

Comparison between the compression ratio of the HCDC(k)
scheme and various statistical and bit-level data compression
algorithms.

79

4.6

Comparison between the compression ratio of the HCDC(k)
scheme with various adaptive compression algorithms for a
number of text files from the Calgary and Canterbury
corpora.

82

4.7

Comparison of the coding rate (Cr) in bpc between the
HCDC(k) and various standard programs for book1 file from
the Calgary corpus.

85

www.manaraa.com

xvi

Abbreviations

ACW Adaptive Character Word length

AF Adaptive Fano

AH Adaptive Huffman

ASCII
American Standard Code For Information

Interchange

BOA Bayesian Optimization Algorithm

BPC Bit Per Character

BWT Burrows–Wheeler transform

CHT Condensed Huffman Table

CPU Central Processing Unit

DETEC Dynamic End Tagged Dense Code

DLETDC Dynamic Lightweight End Tagged Dense Code

EC Escape Code

FGK Faller ,Gallager and Knuth algorithm

www.manaraa.com

xvii

FLH Fixed Length Hamming

Gzip Gun Zone Improvement Plan

HCDC Hamming Code Data Compression

HTML Hyper Text Markup Language

HU Huffman Coding

HF HU following FLU

LDPC Low- Density Paraty Check

LZ Lempel-Ziv

LZB Lempel-Ziv Bell

LZJ Lempel-Ziv Jakobsson

LZMW Lempel-Ziv Miller and Wegman

LZR Lempel-Ziv Rodeh

LZSS Lempel-Ziv Storer and Syzmanski

LZT Lempel-Ziv Tischer

LZW Lempel-Ziv-Welch

MB Mega Byte

www.manaraa.com

xviii

MTF Move – to- Front

PBE Byte Pair Encoding

PNG Portable Network Graphics

RAM Random Access Memory

PPM Prediction with Partial Matching

RLE Run length Encoding

SCC Special Compression Character

SCM Structure Context Model

SCMHuff Structure Context Model Huffman

XML Extensible Mark up Language

www.manaraa.com

1

Chapter One
Introduction

1.1. Definition of Data Compression

Data compression aims to reduce the size of data so that it requires

less disk space for storage and less bandwidth to be transmitted over

data communication channels [Sal 04]. Data compression also

reduces the amount of errors during data transmission over error-

prune data communication channels by decreasing the size of

information to be exchanged over such channels [Adi 07, Fre 04]. An

additional benefit of data compression is in wireless communication

devices where it may introduce a significant power saving. Power

saving is possible by compressing data prior to transmission power

consumption, where the power consumed is directly proportional to

the size of the transmitted data. In fact, in wireless devices,

transmission of a single bit can require over 103 times more power

than a single 32-bit computation [Bar 06].

Data compression is usually obtained by substituting a shorter symbol

for an original symbol in the source data, containing the same

information but with a smaller representation in length. The symbols

www.manaraa.com

2

 may be characters, words, phrases, or any other unit that may be

stored in a dictionary of symbols and processed by a computing

system [Wit 04].

Data compression requires efficient algorithmic transformations of a

source message to produce representations (also called codewords)

that are more compact. Such algorithms are known as data

compression algorithms or data encoding algorithms. Each data

compression algorithm needs to be complemented by its inverse,

which is known as a data decompression algorithm (or data decoding

algorithm), to restore an exact or an approximate form of the original

data.

Data coding techniques have been widely used in developing data

compression algorithms, since coding techniques may lend

themselves well to the above concept. Data coding involves

processing an input sequence [Rue 06]:

X = {x[1], x[2],… x[M]} (1.1)

Where each input symbol, x[i], is drawn from a source alphabet:

S = {si, si …, sm} (1.2)

Whose probabilities are:

www.manaraa.com

3

 = { 1, 2, . . ., m} with 2 ≤ m < ∞ (1.3)

For example, for binary alphabet m=2, S is either 0 or 1.

The encoding process is rendered by transforming X into an output

sequence:

 Y = {y[1], y[2], …, y[Q]} (1.4)

Where each output symbol y[i] is drawn from a code alphabet:

 A = {a1, a2…, aq} (1.5)

Here the code alphabet is still binary (i.e., either 0 or 1, q=2), but Q

must be much less than M. The main problem in data compression is

to find an encoding scheme that minimizes the size of Y, in such a

way that X can be completely recovered by applying the

decompression process.

An algorithm or coding function is called distinct if its mapping from

source messages to codewords is one-to-one. Such a code is called

uniquely decodable if every codeword is recognizable even when

immersed in a stream of other codewords.

A uniquely decodable code is known as a prefix code if it has the

property that no codeword in the code is a prefix of any other

codeword.

www.manaraa.com

4

1.2. Categorization of Data Compression Algorithms

Data compression algorithms are categorized by several

characteristics, such as:

i. Data compression fidelity

ii. Length of data compression symbols

iii. Data compression symbol table

iv. Data compression cost

Following is a brief definition for each of them.

1.2.1 Data compression fidelity

One of the most important characteristics is the fidelity with which the

original and the decompressed data agree with each other. The

decompressed (restored) data can either represent an exact or an

approximate form of the original data set [Sha 06].

Therefore, two fundamentally different styles of data compression can

be recognized, depending on the fidelity of the restored data, these

are: (i) lossless data compression, and (ii) lossy data compression.

www.manaraa.com

5

i. Lossless data compression

It involves a transformation of the representation of the original data

set in such a way that it is possible to reproduce exactly the original

data (exact copy). Lossless compression is used in compressing text

files, executable codes, word processing files, database files,

tabulation files, and whenever it is important that the original and the

decompressed files must be identical.

Lossless compression is used in many applications, for example, the

popular ZIP file format and in the UNIX tool gzip. It is also used as a

component within lossy data compression technologies. Lossless

compression algorithms can usually achieve a 2 to 8 compression

ratio [Rue 06, Bri 07].

www.manaraa.com

6

ii. Lossy data compression

It involves a transformation of the representation of the original data

set in such a way that it is impossible to reproduce exactly the original

data set, but an approximate representation is reproduced by

performing a decompression transformation. This type of

compression is used frequently on the Internet and especially in

streaming media and telephony applications. Because some

information is discarded, it achieves better data compression ratios

that reach 100 to 200, depending on the type of information being

compressed. In addition, higher compression ratio can be achieved if

more errors are allowed to be introduced into the original data [Bri 07,

Wit 04].

www.manaraa.com

7

1.2.2 Length of data compression symbols

Data compression algorithms are characterized by the length of the

symbols an algorithm processes, regardless of whether the algorithm

uses variable length symbols in the original data or in the compressed

data, or both. For example, Run-Length Encoding (RLE) uses fixed

length symbols in both the original and the compressed data. Huffman

encoding uses variable length compressed symbols to represent

fixed-length original symbols. Other methods compress variable-

length original symbols into fixed-length or variable-length encoded

data.

1.2.3 Data compression symbol tables

Another distinguishing feature of the data compression algorithms is

the source of the symbol table. According to this feature, data

compression algorithms can be classified into:

i. Static or fixed data compression algorithms

ii. Dynamic or adaptive data compression algorithms

iii. Semi adaptive data compression algorithms

www.manaraa.com

8

i. Static or fixed data compression algorithms

Some data compression algorithms operate on a static symbol table,

or a fixed dictionary of compression symbols. Because the dictionary

is fixed, it needs not be combined with the compressed data. Such

algorithms are dependent on the format and content of the data to be

compressed. However, a fixed dictionary is usually optimized for a

particular data type, whereas if the same dictionary used for other

types of information the efficiency of the algorithm suffers and

provides a lower compression ratio.

ii. Dynamic or adaptive data compression algorithms

Some data compression algorithms are relatively independent, and

some make two passes at the data. The first pass determines the

frequency of the symbols that will be processed; and builds a symbol

table based on that frequency. The custom symbol table needs to

combine the compressed data, and the second pass uses the custom

symbol table to encode and decode data.

Adaptive compression algorithms build a custom symbol table as they

compress the data. Such algorithms encode each character based on

www.manaraa.com

9

 the frequency of preceding characters in the original data file. The

decompression algorithm builds an identical dynamic table as the

information is decompressed. Adaptive methods usually start with a

minimal symbol table to bias the compression algorithm toward the

type of data they are expecting.

iii. Semi adaptive data compression algorithmes

In a semi-adaptive algorithm the data to be compressed are first

analyzed in their entirety, an appropriate model is then built,

afterwards the data is encoded. The model is stored as part of the

encoded data, as it is required by the decompressor to reverse the

encoding.

Static schemes are similar to this, but a representative selection of

data is used to build a fixed model, which is hard-coded into

compressors and decompressors.

This has the advantage that no model must be explicitly stored with

the compressed data, but the disadvantage is that poor compression

will result if the model is not representative of data presented for

compression.

www.manaraa.com

11

Concerning the type of adaptively being adopted, focus has remained

on static and semi-adaptive techniques, and little attention has been

paid to the class of adaptive algorithms [Kle 00, Xie 03, Gil 06].

1.2.4 Data compression cost

The cost of data compression is an important feature that can be used

to distinguish between the different data compression algorithms.

Most importantly is that compression algorithms should be performed

in as minimum as possible cost. This cost is measured in terms of

time and storage requirement; however, in many applications, and

with the revolutionary advancement in computer technology, the time

is the most important factor. For example, on-the-fly compression

algorithms, such as between application programs and storage

devices, the algorithm should operate as quickly as the storage

devices themselves.

Likewise, if a compression algorithm is built into a hardware data

communications component, the algorithm should not prevent the full

bandwidth of the communication media from being continuously

utilized.

www.manaraa.com

11

The data compression cost for a particular algorithm consists of the

time required by the algorithm to compress the original data and the

time it takes to decompress the data back to its original form. In the

context of the data compression for minimal storage applications, the

cost of compression can be viewed as a one-time cost and hence as

relatively less significant than the cost of decompression, which must

be incurred every time the data is to be retrieved from storage. In the

context of compression designed for fast data transmission

applications, the relative costs of compression at one end and

decompression at the other may be equally significant.

According to the compression-decompression processing time, data

compression algorithms are classified into two classes, these are:

i. Symmetric data compression algorithms

In a symmetric data compression algorithm, the processing times are

almost the same for both compression and decompression

processes.

ii. Asymmetric data compression algorithms

www.manaraa.com

12

In an asymmetric data compression algorithm the compression

processing time is more than the decompression processing time.

1.3. Data Compression Models

Different data compression algorithms have been recommended and

used throughout the years. These data compression algorithms can

be classified into four major models; these are [Pan 00]:

i. Substitution data compression model.

ii. Statistical data compression model.

iii. Dictionary-based data compression model.

iv. Bit-level data compression model.

A substitution data compression model involves the swapping of

repeating characters by a shorter representation. Algorithms that are

based on this model include: Null Suppression, Run-Length Encoding

(RLE), Bit Mapping and Half Byte Packing [Smi 97, Pan 00].

A statistical data compression model involves the generation of the

shortest average code length based on an estimated probability of the

characters. Examples of algorithms that are based on this model

www.manaraa.com

13

 include: Shannon-Fano coding [Rue 06, Rue 04], static/dynamic

Huffman coding [Huf 52, Knu 85,Vit 89,Vit 87], and arithmetic coding

[How 94, Wit 87].

A dictionary-based data compression model involves the substitution

of substrings by indices or pointer code, relative to a dictionary of the

substrings; algorithms that can be classified as a dictionary-based

model include the LZ compression technique and its variations [Ziv

77, Ziv 78, Nel 89, Bri 07].

Finally, since data files could be represented in binary digits, a bit-

level processing can be performed to reduce the size of data. In bit-

level data compression algorithms, the binary sequence is usually

divided into groups of bits that are called minterms, blocks, sub

sequences, etc. These minterms might be considered as representing

a Boolean function.

Then, algebraic simplifications are performed on these Boolean

functions to reduce the size or the number of minterms, and hence,

the number of bits representing the output (compressed) data is

reduced as well. Examples of such algorithms include: the Adaptive

www.manaraa.com

14

 Character Word length (ACW(n)) algorithm [Bah 08b].

The Adaptive Character Word length (ACW(n,s)) scheme [Bah 08b,

Hay 08], the logic-function simplification algorithm [Nof 07], the neural

network based algorithm [Mah 00].

1.4. Text Compression

1.4.1 Syllables and words based text compression

There are a number of data compression techniques that have been

developed throughout the years. Some of which are of general use,

i.e., can be used to compress files of different types (e.g., text files,

image files, video files, etc.). Others are developed to efficiently

compress a particular type of files. In this work, we are concerned with

text files compression.

Text compression can often derive its benefit from the two views of

the textual content: the content can be seen as a stream of syllables

or words. The word-based methods are older, so many

implementations of classical methods exist, for instance Huffman

coding [Wit 94, Huf 52], LZW [Dvo 99], Burrows-Wheeler

transformation [Isa 01], PPM [Adi 06] or Arithmetic coding [Mof 98].

The syllable-based methods are rather young with initial

www.manaraa.com

15

implementations of Huffman coding and LZW [Lan 05].

Porting of classical character-based methods to syllable or word

based is not easy. The transformation heavily influences almost all

inner data structures, because they must be able to work with

undefined number of syllables or words instead of the original

alphabet of 256 characters. Moreover, the large input alphabet also

requests the encoder to export elements of the alphabet to the

decoder. This issue is often solved by exporting the alphabet as a part

of the encoded document [Lan 06a].

The confrontation and comparison of the word and syllable based

methods depends on a language of the input document. Accordingly,

the languages with a simple morphology, e.g. English, are better

compressed by the word-based algorithms. On the other hand, the

languages with a complex morphology are often compressed better

by the syllable-based methods.

1.4.2 Bit-level text compression

Text files compression can also be performed at bit-level, as each

character has its specific binary representation. However, bit-level

www.manaraa.com

16

 data compression algorithms are even younger than the syllable and

word based data compression algorithms, therefore, there are only

few algorithms that have been developed to exploit this concept.

Recently, a lossless binary (bit-level) data compression algorithm that

is based on the error correcting Hamming codes, namely, the HCDC

algorithm was proposed and its performance was analyzed

analytically [Bah 08a]. In the HCDC algorithm, the binary sequence to

be compressed is divided into blocks of n bits length. To utilize the

concept of Hamming codes, the block is considered as a Hamming

codeword that consists of p parity bits and d data bits (n=d+p). Then

each block is tested to find if it is a valid or a non-valid Hamming

codeword. For a valid block, only the d data bits preceded by 0 are

written to the compressed file, while for a non-valid block all n bits

preceded by 1 are written to the compressed file. These additional 0

and 1 bits are used to distinguish the valid and the non-valid blocks

during the decompression process.

This thesis is concerned with the development and performance

evaluation of a new adaptive bit-level text compression scheme that

is based on the HCDC algorithm. The new scheme consists of six

www.manaraa.com

17

steps some of which are repetitively applied to achieve higher

compression ratio. The repetition loops continue until inflation is

detected. The overall compression ratio is a multiplication of the

compression ratios of the individual loops; therefore we refer to the

new scheme as HCDC(k), where k refers to the number of repetition

loops.

In order to enhance the compression power of the HCDC(k) scheme,

a new adaptive encoding format is proposed in which a character is

encoded to binary according to its probability of occurrence. This

method of encoding reduces the binary sequence entropy so that it

grants higher compression ratio. The scheme is implemented in C++

programming language and used to compress a number of text files

from standard corpora.

1.5. Performance Evaluation Parameters

In order to be able to compare the efficiency of the different

compression techniques reliably, and not allowing extreme cases to

cloud or bias the technique unfairly, certain issues need to be

considered. The most important issues need to be taken into account

in evaluating the performance of various algorithms includes the

following [Yia 06]:

www.manaraa.com

18

i. Measuring the amount of compression.

ii. Processing time (Algorithm complexity).

These issues need to be carefully considered in the context for which

the compression algorithm is used. Practically, things like finite

memory, error control, type of data, and compression style

(adaptive/dynamic, semi-adaptive or static) are all factors that should

be considered in comparing the different data compression algorithms

[Bel 90].

1.5.1 Measuring the amount of compression

Several parameters are used to measure the amount of compression

that can be achieved by a particular data compression algorithm, such

as:

i. Compression ratio (C).

ii. Reduction ratio (R).

iii. Coding rate (Cr)

Following is a brief definition for each of them.

i. Compression ratio (C)

The amount of compression is measured by a factor known as

compression ratio (C), which is defined as the ratio between the size

www.manaraa.com

19

of the data before compression and the size of the data after

compression. It is expressed as:

o

c

S
C

S
 (1.6)

Where So and Sc are the sizes of the original and the compressed

data, respectively.

ii. Reduction ratio (R)

The reduction ratio represents the ratio between the difference

between the size of the original data (So) and the size of the

compressed data (Sc) to the size of the original data, which is referred

to as R. It is usually given in percents and it is mathematically

expressed as:

100o c

o

S S
R

S

 (1.7)

www.manaraa.com

21

iii. Coding rate (Cr)

The coding rate expresses the same concept at the compression

ratio, but it relates the ratio to a more tangible quantity. For example,

for a text file, the coding rate may be expressed in “bits/character”

 (bpc), where in uncompressed text file a coding rate of 7 or 8 bpc is

used. In addition, the coding rate of an audio stream may be

expressed in “bits/analogue”, and for still image compression, the

coding rate is expressed by “bits/pixel”. The coding rate is expressed

as:

c

r

o

q S
C

S

 (1.8)

Where q is the number of bit representing each symbol in the

uncompressed file. The relationship between the coding rate (Cr) and

the compression ratio (C), for example, for text file originally using 7

bpc, can be given by:

www.manaraa.com

21

7

rC
C

 (1.9)

It is clear from Eqn. (1.9) that a lower coding rate indicates a higher

compression ratio.

1.5.2 Processing time

The processing time (which is an indication of the algorithm

complexity) is defined, as the time required compressing or

decompressing the data. These compression and decompression

times have to be evaluated separately. As it has been discussed in

section 1.3, data compression algorithms are classified according to

the processing time into either symmetric or asymmetric algorithms.

For a symmetric algorithm, both the compression and the

decompression processing time are almost the same, while for an

asymmetric algorithm, usually, the compression time is much more

than the decompression time.

www.manaraa.com

22

In this context, data storage applications are mainly concerned with

the amount of compression that can be achieved and the

decompression processing time that is required to retrieve the data

back (asymmetric algorithms).

Data transmission applications focus predominately on reducing the

amount of data to be transmitted over communication channels, and

both compression and decompression processing times are the same

at the respective junctions (symmetric algorithms) [Liu 05].

For a fair comparison between the different available algorithms, it is

important to consider both the amount of compression and the

processing time. Therefore, it would be useful to be able to

parameterize the algorithm in such a way that the compression ratio

and processing time could be optimized for a particular application.

There are extreme cases where data compression works very well or

in other conditions where it is inefficient, the type of data that the

original data file contains

www.manaraa.com

23

and the upper limits of the processing time have an appreciable effect

on the efficiency of the technique selected. Therefore, it is important

to select the most appropriate technique for a particular data profile in

terms of both data compression and processing time [Pan 00, Rue

04].

1.6. Statement of the Problem

The statement of the problem can be summarized as follows:

i. Develop an efficient bit-level text compression scheme that is

based on the HCDC algorithm.

ii. Develop a suitable binary-to-character coding format.

iii. Investigate the effect of the coding format on the entropy of the

generated binary sequence and how does it affect the

performance of the new scheme.

iv. Evaluate the performance of the new scheme and compare its

performance with other standard data compression algorithms

and state-of-the-art software.

www.manaraa.com

24

v. Discuss the results obtained, draw conclusions and point-out

some recommendations for future work.

1.7. Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a

literature review that summarizes the most recent and related work. It

is presented in two sections, one reviews the most recent work that is

related to the early data compression algorithms (e.g., substitution,

statistical, and dictionary-based algorithms). The other section

reviews the bit-level data compression algorithms.

Chapter 3 provides a detailed description of the HCDC(k) scheme.

The HCDC algorithm and the new adaptive coding format are also

explained in this chapter. Chapter 4 presents a number of

experiments that are performed to evaluate, compare, and discuss

the compression ratios achieved by the new scheme. First, the

compression ratios achieved by the new scheme over a number of

text files from standard corpora using different coding formats are

compared.

www.manaraa.com

25

Then, the performance of the HCDC(k) scheme with adaptive coding

is evaluated and compared with many widely used compression

algorithms and state-of-the-art software. In Chapter 5, conclusions

are drawn and recommendations for future work are pointed-out.

Finally, in Appendix A an introduction to the standard data

compression corpora (e.g., Calgary, Canterbury, Artificial, and Large

and Miscellaneous corpora), which are widely used in comparing the

performance of the different data compression algorithms, are

presented.

www.manaraa.com

26

Chapter Two
Literature Review

A large number of data compression algorithms have been developed

and used throughout the years. Some of which are of general use,

i.e., can be used to compress files of different types (e.g., text files,

image files, video files, etc.). Others are developed to compress

efficiently a particular type of files. It has been realized that, according

to the representation form of the data at which the compression

process is performed, text compression algorithms can be broadly

classified into two main classes, these are:

i. Bit-level text compression algorithms

ii. Syllable or word based text compression algorithms.

This thesis is mainly concerned with the development and

performance evaluation of a bit-level text compression scheme,

namely the HCDC(k) scheme, therefore Section 2.1 provides a review

on the most recent bit-level text compression algorithms

www.manaraa.com

27

. In Section 2.2., syllable or word based text compression algorithms

are reviewed.

2.1.Bit-Level Text Compression Algorithms

H. Al-Bahadili [Bah 08a] developed a lossless binary data

compression scheme that is based on the error correcting Hamming

codes. It was referred to as the HCDC algorithm. In this algorithm,

the binary sequence to be compressed is divided into blocks of n bits

length. To utilize the Hamming codes, the block is considered as a

Hamming codeword that consists of p parity bits and d data bits

(n=d+p).

Then each block is tested to find if it is a valid or a non-valid Hamming

codeword. For a valid block, only the d data bits preceded by 1 are

written to the compressed file, while for a non-valid block all n bits

preceded by 0 are written to the compressed file. These additional 1

and 0 bits are used to distinguish the valid and the non-valid blocks

during the decompression process.

www.manaraa.com

28

An analytical formula is derived for computing the compression ratio

as a function of block size, and fraction of valid data blocks in the

sequence. The performance of the HCDC algorithm was analyzed,

and the results obtained were presented in tables and graphs. H. Al-

www.manaraa.com

29

Bahadili concluded that the maximum compression ratio that can be

achieved by this algorithm is n/(d+1), if all blocks are valid Hamming

codewords.

H. Al-Bahadili and H. Shakir [Bah 08b] proposed a bit-level data

compression algorithm, in which the binary sequence is divided into

blocks each of n-bit length. This gives each block a possible decimal

values between 0 to 2n-1. If the number of the different decimal values

(d) is equal to or less than 256, then the binary sequence can be

compressed using the n-bit character wordlength. Thus, a

compression ratio of approximately n/8 can be achieved. They

referred to this algorithm as the Adaptive Character Wordlength

(ACW) algorithm, since the compression ratio of the algorithm is a

function of n, it was referred to it as the ACW(n) algorithm.

Implementation of the ACW(n) algorithm highlights a number of

issues that may degrade its performance, and need to be carefully

resolved, such as: (i) If d is greater than 256, then the binary

sequence can not be compressed using n-bit character wordlength,

(ii) the probability of being able to compress a binary sequence using

n-bit character wordlength is inversely proportional to n, and (iii)

www.manaraa.com

31

finding the optimum value of n that provides maximum compression

ratio is a time consuming process, especially for large binary

sequences. In addition, for text compression, converting text to binary

using the equivalent ASCII code of the characters gives a high

entropy binary sequence, thus only a small compression ratio or

sometimes no compression can be achieved.

W. Al-Hayek [Hay 08] developed an efficient implementation scheme

to enhance the performance of the ACW(n) algorithm, and overcome

all the drawbacks mentioned above. In this scheme the binary

sequence was divided into a number of subsequences (s), each of

them satisfies the condition that d is less than 256, therefore it is

referred to as the ACW(n,s) scheme. The scheme achieved

compression ratios of more than 2 on most text files from most widely

used corpora.

S. Nofal [Nof 07] proposed a bit-level files compression algorithm. In

this algorithm, the binary sequence is divided into a set of groups of

bits, which are considered as minterms representing Boolean

functions. Applying algebraic simplifications on these functions

reduce in turn the number of minterms, and hence, the number of bits

www.manaraa.com

31

 of the file is reduced as well. To make decompression possible one

should solve the problem of dropped Boolean variables in the

simplified functions. He investigated one possible solution and their

evaluation shows that future work should find out other solutions to

render this technique useful, as the maximum possible compression

ratio they achieved was not more than 10%.

A. Jaradat et al. [Jar 06] proposed a file splitting technique for the

reduction of the nth-order entropy of text files. The technique is based

on mapping the original text file into a non-ASCII binary file using a

new codeword assignment method and then the resulting binary file

is split into several sub files each contains one or more bits from each

codeword of the mapped binary file. The statistical properties of the

sub files are studied and it was found that they reflect the statistical

properties of the original text file which was not the case when the

ASCII code is used as a mapper.

The nth-order entropy of these sub files was determined and it was

found that the sum of their entropies was less than that of the original

text file for the same values of extensions. These interesting statistical

properties of the resulting subfiles can be used to achieve better

www.manaraa.com

32

compression ratios when conventional compression techniques were

applied to these sub files individually and on a bit-wise basis rather

than on character-wise basis.

K. Barr and K. Asanovi’c [Bar 06] presented a study of the energy

savings possible by lossless compressing data prior to transmission.

Because Wireless transmission of a single bit can require over 1000

times more energy than a single 32-bit computation. It can therefore

be beneficial to perform additional computation to reduce the number

of bits transmitted.

If the energy required to compress data is less than the energy

required to send it, there is a net energy savings and an increase in

battery life for portable computers. This work demonstrated that, with

several typical compression algorithms, there was actually a net

energy increase when compression was applied before transmission.

Reasons for this increase were explained and suggestions were

made to avoid it. One such energy-aware suggestion was asymmetric

compression, the use of one compression algorithm on the transmit

side and a different algorithm for the receive path. By choosing the

lowest-energy compressor and decompressor on the test platform,

www.manaraa.com

33

 overall energy to send and receive data can be reduced by 11%

compared with a well-chosen symmetric pair, or up to 57% over the

default symmetric scheme.

The value of this research is not merely to show that one can optimize

a given algorithm to achieve a certain reduction in energy, but to show

that the choice of how and whether to compress is not obvious. It is

dependent on hardware factors such as relative energy of CPU,

memory, and network, as well as software factors including

compression ratio and memory access patterns. These factors can

change, so techniques for lossless compression prior to

transmission/reception of data must be re-evaluated with each new

generation of hardware and software.

Caire et. al [Cai 04] presented a new approach to universal noiseless

compression based on error correcting codes. The scheme was

based on the concatenation of the Burrows-Wheeler block sorting

transform (BWT) with the syndrome former of a Low-Density Parity-

Check (LDPC) code.

www.manaraa.com

34

Their scheme has linear encoding and decoding times and uses a

new closed-loop iterative doping algorithm that works in conjunction

with belief-propagation decoding.

Unlike the leading data compression methods, their method is

resilient against errors, and lends itself to joint source-channel

encoding/decoding; furthermore their method offers very competitive

data compression performance.

A. A. Sharieh [Sha 04] introduced a Fixed-Length Hamming (FLH)

algorithm as enhancement to Huffman Coding (HU) to compress text

and multimedia files. He investigated and tested these algorithms on

different text and multimedia files. His results indicated that the FLH

following HU and HU following FLH enhance the compression ratio.

A. Jardat and M. Irshid [Jar 01] proposed a very simple and efficient

binary run-length compression technique. The technique is based on

mapping the non-binary information source into an equivalent binary

source using a new fixed-length code instead of the ASCII code. The

codes are chosen

www.manaraa.com

35

 in such a way that the probability of one of the two binary symbols;

say zero, at the output of the mapper is made as small as possible.

Moreover, the "all ones" code is excluded from the code assignments

table to ensure the presence of at least one "zero" in each of the

output codewords.

Compression is achieved by encoding the number of "ones" between

two consecutive "zeros" using either a fixed-length code or a variable-

length code. When applying this simple encoding technique to English

text files, they achieve a compression of 5.44 bpc and 4.6 bpc for the

fixed-length code and the variable length (Huffman) code,

respectively.

M. V. Mahoney [Mah 00] introduced a fast text compression with

neural network model that produces better compression than popular

Limpel-Ziv compressors (zip, gzip, compress), and is competitive in

time, space, and compression ratio with PPM and Burrows-Wheeler

algorithms.

www.manaraa.com

36

 The compressor, a bit-level predictive arithmetic encoder using a 2-

layer, 4×106 by 1 network, is fast (about 104 characters/second)

because only 4-5 connections are simultaneously active and because

it uses a variable learning rate optimized for one-pass training. He

showed that it is practical to use neural networks for text compression

in any application that requires high speed.

2.2. Syllable and Word Based Text Compression Algorithms

J. Adiego et. al [Adi 07] described a compression model for semi-

structured documents, called Structural Contexts Model (SCM), which

takes advantage of the context information usually implicit in the

structure of the text. The idea is to use a separate model to compress

the text that lies inside each different structure type (different XML

tag). The intuition behind SCM was that the distribution of all the texts

that belong to a given structure type should be similar, and different

from that of other structure types.

www.manaraa.com

37

They mainly focused on semi-static models, and tested their idea

using a word-based Huffman method. This was a standard for

compressing large natural language text databases, because random

access, partial decompression, and direct search of the compressed

collection were possible. This variant is dubbed as SCMHuff, and it

retained those features and improved Huffman’s compression ratios.

L. Galambos et. al [Gal 07] discussed the selection of a suitable

compression method, which would utilize the semantics, and

structure of HTML documents. Their guess was that such a method

has the best chance to achieve an optimal level of a compression.

Three branches of compression algorithms were discussed: textual,

special XML, and a mix of the previous two. Last branch was

represented by a XBW algorithm, which combines textual method

with an XML compression method.

E. Conley and S. Klein [Con 06] introduced the notion of multilingual-

text compression.

www.manaraa.com

38

The basis of multilingual-text compression is first the ability to match

the corresponding parts of related texts by identifying semantic

correspondences across the various sub-texts, a task generally

referred to as text alignment. Some methods for detailed alignment

use an existing multilingual glossary, but all of them generate their

own probabilistic glossary, which corresponds to the processed text.

The idea is to save storage space by replacing words and phrases

with pointers to their translations, determined by any alignment

algorithm. Unaligned words are compressed on their own using

HuffWord encoding. The suggested method was tested on an

English-French corpus of the European Union. They obtained a

compression ratio of 22%, which is similar to the performances of Bzip

and HuffWord and better than that of Gzip.

S. Rein et. al [Rei 06a] proposed a lossless compression method for

short data series (larger than 50 Bytes). The method uses arithmetic

coding and context modeling with a low-complexity data model. A

data model that takes 32 KBytes of RAM already cuts the data size in

half. The compression method just takes a few pages of source code,

www.manaraa.com

39

 is scalable in memory size, and may be useful in sensor or cellular

networks to spare bandwidth. S. Rein et. al demonstrated that their

method allows for battery savings when applied to mobile phones.

Further work on very short text files compression can be found in [Rei

06b, Lan 06b].

L. Robert and R. Nadarajan [Rob 06] developed a few algorithms for

random access text compression in which there is a direct access to

the compressed data, so that it is possible to start decompression

from any place in the compressed file. If any byte changed during

transmission, the remaining data can be retrieved safely. Their work

was based on the Byte Pair Encoding (BPE) Scheme. The BPE

algorithm was based on the fact that ASCII character set uses only

codes from 0 through 127.

That frees up codes from 128 through 255 for use as pair codes. Pair

code is a byte, used to replace the most frequently appearing pair of

bytes in the text file. Five algorithms are developed based on this BPE

scheme. These algorithms find the unused bytes at each level and try

to use those bytes for replacing the most frequently used bytes. These

algorithms compress typical text files approximately half of their

www.manaraa.com

41

 original size, but of course, the actual amount of compression

depends on the data being compressed. In these algorithms, most of

the time is spent on searching for the most frequently occurring pairs.

However, decompression is very fast in all these algorithms.

N. Brisaboa , et. al [Bri 05] addressed the problem of adaptive

compression of natural language text, focusing on the case where low

bandwidth is available and the receiver has little processing power,

as in mobile applications. Their technique achieves compression

ratios around 32% and requires very little effort from the receiver. This

tradeoff, not previously achieved with alternative techniques, is

obtained by breaking the usual symmetry between sender and

receiver dominant in statistical adaptive compression.

Moreover, they showed that their technique could be adapted to avoid

decompression at all cases where the receiver only wants to detect

the presence of some keywords in the document.

This is useful in scenarios such as selective dissemination of

information, news clipping, alert systems, text categorization, and

clustering. The asymmetry they introduced, enable the receiver to

search the compressed text much faster than the plain text. This was

www.manaraa.com

41

previously achieved only in semi-static compression scenarios. They

improved the existing results on word-based adaptive compression,

focusing on reducing the effort of the receiver in order to either

uncompress or search the compressed text.

A. Moffat et. al [Mof 05] enhanced the performance of the block-

sorting algorithm, which is an innovative compression mechanism

introduced by Burrows and Wheeler. It involves three steps:

permuting the input one block at a time using the Burrows–Wheeler

transform (BWT), applying a move-to-front (MTF) transform to each

of the permuted blocks, and then entropy coding the output with a

Huffman or arithmetic coder. Block-sorting implementations have

assumed that the input message is a sequence of characters. They

extended the block-sorting mechanism to word-based models. They

also considered other transformations, and were able to show

improved compression results compared to MTF and uniform

arithmetic coding. For large files of text, the combination of word-

based modeling, BWT, and MTF-like transformations allowed

excellent compression effectiveness to be attained within reasonable

resource costs.

www.manaraa.com

42

I. Witten [Wit 04] showed that the text mining is about inferring

structure from sequences representing natural language text, and

may be defined as the process of analyzing text to extract information

that is useful for particular purposes. Although handcrafted heuristics

are a common practical approach for extracting information from text,

a general, approach requires adaptive techniques.

He studied the way in which the adaptive techniques to use a text

compression approach in text mining. He developed several

examples: extraction of hierarchical phrase structures from text,

identification of key phrases in documents, locating proper names and

quantities of interest in a piece of text, text categorization, word

segmentation, acronym extraction, and structure recognition. He

concluded that compression forms a sound unifying principle that

allows many text-mining problems to be tacked adaptively.

R. Hashemian [Has 03] presented a new Huffman coding and

decoding technique in which there is no need to construct a full size

Huffman table in this technique

www.manaraa.com

43

; instead, the symbols were encoded directly from the table of code-

lengths. For decoding purposes a new Condensed Huffman Table

(CHT) was also introduced. It was shown

 that by employing this technique both encoding and decoding

operations became significantly faster, and the memory consumption

became much smaller compared to the normal Huffman

coding/decoding.

A. Chu [Chu 02] presented a new universal lossless data compression

algorithm derived from the popular and widely used LZ77 family. He

referred to it as LZAC. The objective of LZAC was to improve the

compression ratios of the LZ77 family while retaining the family’s key

characteristics: simple, universal, fast in decoding, and economical in

memory consumption. LZAC presented two new ideas: composite

fixed-variable-length coding and offset difference coding. A composite

fixed-variable-length coding combined fixed-length coding and

variable-length coding into a single coding scheme.

www.manaraa.com

44

Rueda et al. [Rue 01] present an enhanced version of the static Fano

method, namely Fano+. They formally analyzed Fano+ by presenting

some properties of Fano trees, and the theory of list rearrangements.

The enhanced algorithm achieved compression ratios arbitrarily close

to those of Huffman's algorithm. Empirical results on files of the

Canterbury corpus corroborate the almost-optimal efficiency of the

enhanced algorithm and its canonical nature

H. Plantinga [Pla 06] proposed a heuristic for text compression via

diagram replacement and a fast entropy coding method. The resulting

compression algorithm is an asymmetric algorithm, in the sense that

compression requires much time and memory, but decompression is

fast and requires little memory. The algorithm is also classified as a

semi-adaptive, since it allows a random access into the compressed

file without decompressing the whole file.

www.manaraa.com

45

Compression ratios achieved are competitive with gzip for a standard

corpus of texts, and better for large files. The algorithm is well suited

to applications for which expensive compression of large files is

acceptable but decompression must be inexpensive, and high

compression ratios or random access into the compressed file are

required.

www.manaraa.com

46

Chapter Three
The Adaptive Bit-Level Text Compression Scheme

This chapter provides a detail description of an adaptive, lossless,

symmetric, bit-level, text compression scheme, which is based on the

Hamming Codes Data Compression (HCDC) algorithm [Bah 08a].

The scheme consists of six steps some of which are repetitively

applied to achieve higher compression ratio. The repetition loops

continue until inflation is detected. The overall compression ratio is

the multiplication of the compression ratios of the individual loops,

therefore we refer to the new scheme as HCDC(k), where k refers to

the number of repetition loops.

In order to enhance the compression power of the HCDC(k) scheme,

a new adaptive coding format is used in which characters are

encoded to binary according to their frequency of occurrence. In

contrast to ASCII code, this method of encoding reduces the entropy

of the generated binary sequence so that it grants higher compression

ratio.

www.manaraa.com

47

Section 3.1 provides an introduction to the entropy of English text and

how it affects the compression ratio and the coding rate that can be

 achieved by a particular data compression algorithm over the text.

Different coding formats can be used in converting text into binary

sequence, such as the standard ASCII code, Huffman codes,

adaptive codes, etc. In Section 3.2 a description is given for the

adaptive coding format and how it can be used to convert a sequence

of characters into a binary sequence.

The concept of bit-level data compression is introduced in Section 3.3.

Section 3.4 presents a detailed description of the HCDC algorithm.

This section also presents the derivation and analysis of the

compression ratio of the HCDC algorithm. The HCDC(k) scheme is

described in Section 3.5. Finally, in Section 3.6, the components of

the compressed file header of the HCDC(k) scheme are defined.

www.manaraa.com

48

3.1. Entropy of English Text

The entropy is a statistical parameter that can be used to measure

how much information is produced on the average for each letter of a

text in the language. If the language is translated into binary digits (0

and 1) in the most efficient way, the entropy E, is the average number

of binary digits required per letter of the original language. The

redundancy, on the other hand, measures the amount of constraint

imposed on text in the language due to its statistical structure [Sha

51].

For a set of possible messages M, the entropy is defined as:

() () ()
m M

E M p m i m

 (3.1)

where p(m) is the probability of message m. i(m) is the notion of the

self information of a message and it is given by:

www.manaraa.com

49

2

1
() log ()

()
i m

p m
 (3.2)

This self-information represents the number of bits of information

contained in it and, roughly speaking, the number of bits that should

be used to represent that message. Larger entropies represent more

information, and perhaps counter-intuitively, the more random a set

of messages (the more even the probabilities) the more information

they contain on average.

The amount of information that is contained by a text could be used

as a bound to the maximum amount of compression that can be

achieved.

As it has been mentioned in Chapter 1, one way to measure the

information content is in terms of the average number of bits per

character (bpc), i.e., coding rate (Cr). Table (3.1) shows a few

approaches that can be used to measure the amount of information

contained by an English text in bpc.

www.manaraa.com

51

If all characters are assumed to have equal probabilities, a separate

code is used for each character, and there are 96 printable characters

(the number on a standard keyboard) then a 7-bit character word

length (7 bpc) is required. The entropy, assuming even probabilities

(p=1/96), is 6.6 bpc.

Table (3.1)

Information content of the English text using different approaches.

Approach bpc

1. Standard text (7 bpc) 6.6

2. Entropy 4.5

3. Huffman code (Average) 4.7

4. Entropy (Group of 8 characters) 2.4

5. Asymptotically approaches 1.3

If a probability distribution (based on a corpus of English text) is given

for the characters the entropy is reduced to about 4.5 bps. If a

separate code is used for each character (for which the Huffman code

is optimal), then the number is slightly larger 4.7 bpc

www.manaraa.com

51

It is clear that so far no advantage, of relationships among adjacent

or nearby characters, is considered. If a text is broken into blocks of

8 characters, and the entropy of those blocks (based on measuring

their frequency in an English corpus) is measured, then entropy of

about 19 bits is obtained. Thus, since 8 characters are coded at a

time, the entropy is 2.4 bpc.

If groups of larger and larger blocks are processed, entropy would

approach 1.3 (or lower) can be reached. It is impossible to actually

measure this because there are too many possible strings to run

statistics on, and no corpus is large enough.

This value 1.3 bpc is an estimate of the information content of the

English text. Assuming it is approximately correct, this bounds how

much can be expected if an English text is losslessly compressed.

Table (3.2) shows the compression rate of various data compression

algorithms implemented by standard software. All these software,

however, are for general purposes and not designed specifically for

the English text.

www.manaraa.com

52

Table (3.2)

Information content of the English text using different standard
software.

Software bpc

1. Compress 3.7

2. GZIP 2.7

3. BOA 2.0

The Bayesian Optimization Algorithm (BOA) is the current state-of-

the-art for general-purpose compressors. To reach 1.3 bpc, the

compressor would surely have to know about English grammar,

standard idioms, etc. A complete set of compression ratios for the

Calgary corpus for a variety of data compression algorithms is shown

in Table (3.3).

Table (3.3)

Lossless compression ratios for text compression Calgary corpus.

Scheme bpc Researcher

1. LZ77 3.94 Ziv and Lempel, 1977

2. LZMW 3.32 Miller and Wegman, 1984

3. LZH 3.30 Brent, 1987

4. MTF 3.24 Moffat, 1987

5. LZB 3.18 Bell, 1987

6. GZIP 2.71 -

7. PPMC 2.48 Moffat, 1988

8. SAKDC 2.47 Williams

www.manaraa.com

53

9. PPM 2.34 Cleary, Teahan, and Witten, 1994

10. BW 2.29 Burrows and Wheeler, 1995

11. BOA 1.99 Sutton, 1997

12. RK 1.89 Taylor, 1999

3.2.The Adaptive Character Coding Format

There are different coding formats that can be used in converting a

data file into binary digits. They usually have enormous effects on the

entropy of the generated binary sequence, and subsequently affect

the compression ratio and the coding rate that can be achieved by a

particular data compression algorithm over the compressed data file.

A conventional coding format is the ASCII code, in which each

character within the source file is coded using an 8-bit codeword.

However, a text character is usually coded using 7-bit codeword.

Thus, the length of the binary sequence in bits that is generated from

encoding a text file into binary sequence is given by:

 So = 7 Tc (3.3)

Where So is the length of the binary sequence in bits, and Tc is the

total number of characters within the text file. Another coding format

www.manaraa.com

54

is the Huffman coding, which is described in detail in [Hay 08]. Using

Huffman coding, the length of the binary sequence may be expressed

as:

1

Nc

o c i i
i

S T f w

 (3.4)

Where Nc is the types of character within the source file.

fi is the frequency or the probability of occurrence of the ith

character.

wi is the number of bits representing the ith character.

Tc is the total number of characters within the source file

(size of file in Bytes).

So is the length of the binary sequence generated in bits.

In this thesis, a new coding format is introduced and investigated,

namely, the adaptive coding format. In adaptive coding, first, the

character frequencies are calculated and sorted in descending order

from the most common character to the least, similar to Huffman

coding. Second, the most common character is given a 0 sequence

www.manaraa.com

55

 number, while the least common character is given Nc-1 sequence

number. Then, each character is coded to binary according to its

sequence number. For example, the equivalent binary codes for the

most (first), second, and the third characters are 0000000, 0000001,

and 0000010, respectively.

This form of coding ensures a low entropy binary sequence, therefore,

we expect a higher compression ratio and lower bpc is required to

represent characters within the compressed file.

In order not to get the data mixed up during the decompression phase,

the number of the sorted characters and the characters themselves

should be included in the compressed file header. This of course will

add an overhead of not more than 129 bytes. It is clear that this

overhead is small as compared to the size of the data file.

Table (3.4) presents the binary codeword of the 10 most common

characters in the paper1 text file from the Calgary corpus using ASCII

and adaptive coding formats.

It is clear that the entropy using adaptive coding will be lower than

using ASCII coding as the number of 0s will overwhelm the number

of 1s in the binary sequence.

www.manaraa.com

56

The entropies of the binary sequences generated for a number of text

files from the Calgary corpus, using different coding formats (e.g.,

ASCII coding, Huffman coding, and adaptive coding) are compared in

Table (3.5). The results obtained reveal that the adaptive coding has

the minim entropy as compared to the others, therefore we expect to

achieve higher compression ratio by using this coding format.

Table (3.4)

ASCII and adaptive codes of the 10 most common characters in
paper1 file.

Characte

r
Frequenc

y

ASCII coding Adaptive Coding

Decima
l

Binary Decima
l

Binary

1 Space 7301 32 010000
0

0 000000
0 2 e 4689 101 110010

1
1 000000

1
3 t 3048 116 111010

0
2 000001

0
4 i 2879 105 110100

1
3 000001

1
5 o 2568 111 110111

1
4 000010

0
6 n 2503 110 110111

0
5 000010

1
7 a 2441 97 110000

1
6 000011

0
8 s 2374 115 111001

1
7 000011

1
9 r 2058 114 111001

0
8 000100

0
1
0

l 1593 108 110101
0

9 000100
1

3.3. Concepts of Bit-Level Data Compression Algorithms

In order to use a bit-level data compression algorithm, first, the data

file should be represented in binary digits. A data file can be

www.manaraa.com

57

 represented in binary digits by concatenating the binary sequences

of the characters within the file using a specific mapping or coding

format, such as ASCII, Huffman and adaptive coding formats.

Afterwards, a bit-level processing can be performed to reduce the size

of the data files.

The coding format has a huge influence on the entropy of the

generated binary sequence and consequently the compression ratio

(C) or the coding rate (Cr) that can be achieved.

Usually, in bit-level data compression algorithms, the binary

sequence is subdivided into groups of bits that are called minterms,

Table (3.5)

Entropies of the binary sequences generated for a number of text
files from the Calgary corpus using different coding formats.

File

Name
Size

(Byte)
Nc

Entropy

ASCII Huffman Adaptive

1 bib 111261 81 0.999717 0.996537 0.859069

2 book1 768771 82 0.999438 0.995545 0.793412

3 book2 610856 96 0.999078 0.996209 0.818262

4 paper1 53161 95 0.999482 0.996193 0.834678

5 paper2 82199 91 0.998521 0.995549 0.801658

6 paper3 46526 84 0.997612 0.996422 0.810520

7 paper4 13286 80 0.999019 0.995512 0.809544

8 paper5 11954 91 0.999971 0.996128 0.824279

9 paper6 38105 93 1.000000 0.996432 0.835081

www.manaraa.com

58

 blocks, sub sequences, etc. In this work we shall use the term blocks

to refer to each group of bits. These blocks might be considered as

representing a Boolean function. Then, algebraic simplifications for

bit-reduction are performed on these Boolean functions to reduce the

size or the number of blocks, and hence, the number of bits

representing the data file is reduced as well.

Examples of bit-level data compression algorithms that are based on

this approach include: the Adaptive Character Wordlength (ACW(n))

algorithm [Bah 08b], the Adaptive Character Wordlength (ACW(n,s))

scheme [Bah 08b, Hay 08], the logic-function simplification algorithm

[Nof 07], the neural network based algorithm [Mah 00], and the error-

correcting Hamming code (HCDC) algorithm [Bah 08a].

3.4. The HCDC Algorithm

The error-correcting Hamming code has been widely used in

computer networks and digital data communication systems as a

single bit error correcting code or two bits errors detection code. It can

also be tricked to correct burst errors. The key to Hamming code is

the use of extra parity bits (p) to allow the identification of a single bit

and a detection of two bits errors [Kim 05, Tan 03].

www.manaraa.com

59

Thus, for a message having d data bits and to be coded using

Hamming code, the coded message (also called codeword) will then

have a length of n bits, which is given by:

n = d + p (3.5)

This would be called a (n,d) code. The optimum length of the

codeword (n) depends on p, and it can be calculated as:

 n = 2
p - 1 (3.6)

The data and the parity bits are located at particular locations in the

codeword. The parity bits are located at positions 2
0
, 2

1
, 2

2
, …, 2

p-1
 in

the coded message, which has at most n positions. The remaining

positions are reserved for the data bits, as shown in Figure (3.1). Each

parity bit is computed on different subsets of the data bits, so that it

forces the parity of some collection of data bits, including itself, to be

even or odd.

A lossless binary data compression algorithm based on the error

correcting Hamming codes, namely the HCDC algorithm, was

proposed by H. Al-Bahadili [Bah 08a]. In this algorithm, the data

www.manaraa.com

61

 symbols (characters) of a source file are converted to binary

sequence by concatenating the individual binary codes of the data

symbols.

The binary sequence is, then, subdivided into a number of blocks,

each of n-bit length as shown in Figure (3.1b). The last block is

padded with 0s if its length is less than n. For a binary sequence of So

bits length, the number of blocks B (where B is a positive integer

number) is given by:

oS

B
n

 (3.7)

The number of padding bits (g), which may be added to the last block

is calculated by:

 g = B * n – So (3.8)

The number of parity bits (p) within each block is given by:

ln (1)

ln (2)

n
p

 (3.9)

www.manaraa.com

61

For a block of n-bit length, there are 2
n
 possible binary combinations

(codeword) having decimal values ranging from 0 to 2
n
-1, only 2

d
 of

them are valid codewords and 2
n
-2

d
 are non-valid codewords.

Each block is then tested to find if it is a valid block (valid codeword)

or a non-valid block (non-valid codeword). During the compression

process, for each valid block the parity bits are omitted, in other

words, the data bits are extracted and written into a temporary

compressed file. However, these parity bits can be easily retrieved

back during the decompression process using Hamming codes. The

non-valid blocks are stored in the temporary compressed file without

change.

In order to be able to distinguish between the valid and the non-valid

blocks during the decompression process, each valid block is

preceded by 0, and each non-valid block is preceded by 1 as shown

in Figure (3.1c). Figures (3.2) and (3.3) summarize the flow of the

compressor and the decompressor of the HCDC algorithm.

www.manaraa.com

62

Figure (3.1) - (a) Locations of data and parity bits in 7-bit codeword,
(b) an uncompressed binary sequence of 21-bit length divided into 3
blocks of 7-bit length, where b1 and b3 are valid blocks, and b2 is a
non-valid block, and (c) the compressed binary sequence (18-bit
length).

b0 b1 b2 b3 b4 b5 b6

p0 p1 d0 p2 d1 d2 d3

b (n = d + p)

(a)

b0 b1 b2 b3 b4 b5 b6 b0 b1 b2 b3 b4 b5 b6 b0 b1 b2 b3 b4 b5 b6

b1 (n) b2 (n) b3 (n)

(b)

0 b2 b4 b5 b6 1 b0 b1 b2 b3 b4 b5 b6 0 b2 b4 b5 b6

b1 (d + 1) b2 (n + 1) b3 (d + 1)

(c)

www.manaraa.com

63

1. Initialization

Select p

Calculate n = 2
p
 - 1

Calculate d = n - p

Calculate B = ceiling(So/n)

Calculate g = B * n - So

Initialize b = 0

2. Reading binary data

Read a block of n-bit length

[Add 1 to b]

3. Check for block validity

If (block = valid codeword) then

Extract the data bits (d-bit)

Write 0 followed by the extracted d-bits to the

temporary compressed file

Else (block = non-valid codeword)

Write 1 followed by all n-bits to the temporary

compressed file

End if

4. If (b<B) then Goto Step 2

Figure (3.2) - The main steps of the HCDC compressor.

www.manaraa.com

64

Figure (3.3) - The main steps of the HCDC decompressor.

1. Initialization

Select p

Calculate n = 2p - 1

Calculate d = n - p

Initialize b = 0

2. Reading binary data

Read one bit (h)

[Add 1 to b]

3. Check for block validity

If {h = 0} then

[Add 1 to v

Read the following d data bits

Compute the Hamming codes for these d data bits

Write the coded block the temporary decompressed binary

sequence

Else {h = 1} then

[Add 1 to w]

Read a block of n bits length

Write n bits block to the temporary decompressed binary

sequence

End if

4. If (not end of data) go to Step 2

www.manaraa.com

65

3.4.1 Derivation and Analysis of HCDC Algorithm Compression
Ratio

This section presents the analytical derivation of a formula that can

be used to compute the compression ratio achievable using the

HCDC algorithm. The derived formula can be used to compute C as

a function of two parameters:

i. The block size (n).

ii. The fraction of valid blocks (r).

In the HCDC algorithm, the original binary sequence is divided into B

blocks of n-bit length. These B blocks are either valid or non-valid

blocks; therefore, the total number of blocks is given by:

www.manaraa.com

66

B = v + w (3.10)

where v and w are the number of valid and non-valid blocks,

respectively.

As it has been discussed in the previous section, in the HCDC

algorithm, the binary sequence is divided into a number of blocks of

n-bit length, each block is then subdivided into d data bits and p parity

bits. For a valid block only the d data bits preceded by 0 are appended

to the compressed binary sequence (i.e., d+1 bits for each valid

block). So that the length of the compressed valid blocks (Sv) is given

by:

 Sv = v (d + 1) (3.11)

For a non-valid block all bits are appended to compressed binary

sequence (i.e., n+1 bits for each non-valid block). The number of bits

appended to the compressed binary sequence is given by:

 Sw = w (n + 1) (3.12)

Thus, the length of the compressed binary sequence (Sc) can be

calculated by:

www.manaraa.com

67

 Sc = Sv + Sw = v (d + 1) + w (n + 1) (3.13)

Using Eqns. (3.5) and (3.10), Eqn. (3.13) can be simplified to

 Sc = Bn + B –

 (3.14)

Substituting So=nB and Sc as it is given by Eqn. (3.14) into the

equation of the compression ratio (C) yields:

1

o

c

S n
C

S n r p

 (3.15)

where r=v/B, and it represents the fraction of valid blocks. Substitute

Eqn. (3.6) into Eqn. (3.15) gives:

2 1

2

p

p
C

r p

 (3.16)

It is clear from Eqn. (3.16) that, for a certain value of p, C is inversely

proportional to r, and C is varied between a maximum value (Cmax)

when r=1 and a minimum value (Cmin) when r=0. It can also be seen

from Eqn. (3.16) that for each value of p, there is a value of r at which

C=1. This value of r is referred to as r1, and it can be found that r1=1/p.

www.manaraa.com

68

Table (3.6) lists the values of Cmax, Cmin, and r1 for various values of

p. These results are also shown in Figures (3.4) and (3.5), where

Figure (3.4) shows the variation of Cmax and Cmin with p, and Figure

(3.5) shows the variation of r1 with p. Figure (3.6) shows the variations

of C with respect to r for values of p varies between 2 to 8.

The numerical results are tabulated in Table (3.7). It can be deduced

from Figure (3.6) and Table (3.7) that satisfactory values of C can be

achieved when p≤4 and r>r1.

Finally, one important feature of the HCDC algorithm is that it can be

repeatedly applied on the binary sequence, and an equation can be

derived to compute, what we refer to as the accumulated compression

ratio (Ck):

1

1 1

k k
i

k i
i i

i

S
C C

S

 (3.17)

Where k is the number of repetitions; Si and Si-1 are the sizes of the

binary file before and after the ith compression loop; Ci is the

compression ratio of the ith compression loop. For i=1, So represents

the size of the original file.

www.manaraa.com

69

Table (3.6)

Variation of Cmin, Cmax, and r1 with number of parity bits (p).

p Cmin Cmax r1

2 0.750 1.500 0.500

3 0.875 1.400 0.333

4 0.938 1.250 0.250

5 0.969 1.148 0.200

6 0.984 1.086 0.167

7 0.992 1.050 0.143

8 0.996 1.028 0.125

Figure (3.4) - Variation of Cmin and Cmax with p.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
o

m
p

re
ss

io
n

 r
at

io
 (

 C
)

C max

C min

www.manaraa.com

71

Figure (3.5) - Variation of r1 with p.

Table (3.7)

Variations of C with respect to r for various values of p.

r
Number of the parity bits (p)

2 3 4 5 6 7 8

0.0 0.750 0.875 0.938 0.969 0.984 0.992 0.996

0.1 0.789 0.909 0.962 0.984 0.994 0.998 0.999

0.2 0.833 0.946 0.987 1.000 1.003 1.003 1.002

0.3 0.882 0.986 1.014 1.016 1.013 1.009 1.006

0.4 0.938 1.029 1.042 1.033 1.023 1.014 1.009

0.5 1.000 1.077 1.071 1.051 1.033 1.020 1.012

0.6 1.071 1.129 1.103 1.069 1.043 1.026 1.015

0.7 1.154 1.186 1.136 1.088 1.054 1.032 1.018

0.8 1.250 1.250 1.172 1.107 1.064 1.038 1.022

0.9 1.364 1.321 1.210 1.127 1.075 1.044 1.025

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
ri

ti
ca

l
fr

ac
ti
o
n
 o

f
v
al

id
 b

lo
ck

s.

r 1

www.manaraa.com

71

1.0 1.500 1.40 1.250 1.148 1.086 1.050 1.028

Figure (3.6) - Variations of C with respect to r for various values of p.

English text characters are usually converted to binary using its

equivalent 7-bit ASCII codes, which means that each character can

be considered as a (7,4) codeword. It has been mentioned earlier that

not all 7-bit codewords are valid codewords, in fact only 16 codewords

(2d) are valid, and the remaining 112 codewords (2n-2d) are non-valid.

The ASCII codes of these 16 valid codewords and the characters they

represent are listed in Table (3.8).

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of valid blocks (r)

C
o

m
p

re
ss

io
n

 r
at

io
 (

 C
)

 .

 p = 2

 p = 3

 p = 4

 p = 5

 p = 6

 p = 7

 p = 8

www.manaraa.com

72

According to the statistics in Standard English text, these valid

codewords can be categorized into three groups:

i. Wide-use (their decimal values are equivalent to the ASCII

code of the characters a and f).

ii. Rare-use (their decimal values are equivalent to the ASCII

code of the characters K, L, R, U, x, *, -, 3, and 4).

iii. Not-used (their decimal values are equivalent to the ASCII

code of the unprintable characters of 0, 7, 25, 30, and 127

ASCII code).

Table (3.8) – Valid 7-bit codewords.

ASCII
Code

Character Category

0 Control Character Not used

7 Control Character Not used

25 Control Character Not used

30 Control Character Not used

42 * Rare-use

45 - Rare-use

51 3 Rare-use

52 4 Rare-use

75 K Rare-use

76 L Rare-use

82 R Rare-use

85 U Rare-use

www.manaraa.com

73

97 a Frequent -
use

102 f Frequent-
use

120 x Rare-use

127 Control Character Not-used

Thus, encoding characters to binary using their equivalent ASCII

codes and testing the validity of these characters either yields a very

low compression ratio or most properly yields inflation. This is

because a small proportion of the characters within the text may have

valid codewords.

If adaptive coding is used in converting the text characters into binary

sequence, it produces low entropy binary sequence, but still only two

of these sequence codes are valid codewords (0 and 7), which

represent the 1st and the 8th most common characters. Once again,

these two codes may represent a small proportion of the characters

within the text file, so that achieving reduction in the size of the text

file is critical.

3.5. The HCDC (k) Scheme

As it has been discussed in the previous section, a straight forward

implementation of the HCDC algorithm for text compression may not

www.manaraa.com

74

always produce an adequate compression ratio regardless of the

coding format that is used to convert the text characters to binary

sequence

Therefore, to enhance the performance of the HCDC algorithm for

text compression, we develop an enhanced scheme. The new

scheme is based on the HCDC algorithm and it consists of six main

steps, which are repetitively applied to achieve higher compression

ratio [Bah 07a].

The repetition loops continue until inflation detected and the overall

compression ratio is the multiplication of the compression ratios of the

individual loops, therefore we refer to the new scheme as HCDC(k),

where k refers to the number of repetition loops. Figure (3.7)

represent the flowchart of the HCDC(k).

www.manaraa.com

75

Figure (3.7) – The HCDC(k) Scheme flowchart.

In order to enhance the compression power of the HCDC(k) scheme,

the adaptive coding format is used in which a text character is

encoded to binary according to its frequency so that the binary

sequence will have low entropy and higher compression ratio is

granted.

Calculate
character

frequencies

Sort the
Characters

In descending
according to

its
frequencies

Encode each
Character to

An
equivalent

Binary
codeword

Replace the first
characters d2

with a valid
codwords

Apply HCDC
Algorithm

O
rig

in
a
l

te
x
t

file

C
o

m
p

re
s
s
e

d

F
ile

1 2 3

4

5
Inflatio

n?

Yes

NO K=K+1

www.manaraa.com

76

The six main steps of the HCDC(k) scheme can be summarized as

follows:

Step 1: Calculate characters frequencies (fi, i=1, 2, 3, …, Nc, where

Nc is the number of symbols within the text file). At this stage,

if the standard HCDC algorithm is performed, the resulting

compression ratio for a single loop can be derived as:

1 1 1

(1) (1)
c c c

i c i c

N N N

i i i

i i i
A V A V

C n f d f n f

 (3.18)

where Ai is the ASCII code of the ith character, and Vc is any valid 7-

bit codeword. In the above equation,
1

cN

i

i

f

 represents the total

number of characters (number of blocks (B) within the text file). While

1

c

i c

N

i

i
A V

f

 and
1

c

i c

N

i

i
A V

f

 represent the number of valid characters (v) and

non-valid characters (w), respectively.

www.manaraa.com

77

For a (7, 4) Hamming code, it can be easily shown that for a

compression to be achieved (C>1) the fraction of valid characters

(r=v/B) should be greater than 1/3. The compression ratio is directly

proportional to r, and the maximum compression ratio that can be

achieved is 1.4 (7/5) when all characters have valid codewords.

Step 2: Sort characters in descending order according to their

frequencies. Start with 0 for the most common character and

Nc-1 for the least common character. A list of these sorted

characters is stored in the compressed file header, to be

used during the decompression process.

Step 3: Encode each character within the text file to an equivalent

binary digits. Each character in the text file is converted to 7-

bit binary digits according to its sequence number, not

according to its equivalent ASCII code. For Standard English

text files, this of course will reduce the entropy of the binary

file and grants higher compression ratio.

www.manaraa.com

78

Step 4: Replace any of the 16 most common codewords with a valid

codeword if it is not originally representing a valid codeword.

A record of each original codeword and its replacement must

also be recorded and stored in the compressed file header. In

this case, the compression ratio can be expressed as:

2

1 1 17

(1) (1)

d
c cN N

i i i

i i i

C n f d f n f

 (3.19)

Step 5: Test each 7-bit block to find if it is a valid or a non-valid

codeword. If the codeword is valid, then only the data bits (bits

at positions 3, 5, 6, and 7) preceded by 0 are written to the

compressed binary file, otherwise all bits preceded by 1 are

written to the file.

Step 6: Repeat steps 2 to 5 until inflation (C<1) is detected. The

compressed binary file of each loop can be repeatedly

processed

www.manaraa.com

79

until the compression ratio either reaches steady state (i.e., saturated)

or inflation is detected. This may occur because after a few

iterations the 7-bit binary blocks will have equal frequencies.

The overall or the accumulated compression ratio (Ck) is computed

as a multiplication of the compression ratio of the individual loops (Ci),

as expressed in Eqn. (3.17).

The main features of the HCDC(k) scheme are:

i. Bit-level. It processes the text file at a binary level.

ii. Lossless. An exact form of the source file can be retrieved.

iii. Adaptive. The character-binary coding depends on the

characters frequencies.

iv. Symmetric. The compression/decompression CPU times are

almost the same.

3.6 The Compressed File Header

The HCDC(k) scheme compressed file header contains all additional

information that is required by the decompression algorithm. It

consists of the following fields:

www.manaraa.com

81

i. HCDC field

ii. Coding filed

iii. Valid codewords field

iv. Replacement field

v. Padding field

Following is a brief description for each of the above fields

i. HCDC field

HCDC field is an 8-byte field that encloses information related to the

HCDC(k) scheme, such as: algorithm name (HCDC), algorithm

version (V), coding format (F), number of compression loops (k).

The original HCDC algorithm was designated as Version-0 (i.e., V is

set to 0), the HCDC(k) scheme is designated as Version-1 (i.e., V is

set to 1).

www.manaraa.com

81

The coding format (F) is set to 0 for ASCII coding, 1 for Huffman

coding, 2 for adaptive coding, etc. Table (3.9) lists the constituents of

this field and their description.

ii. Codes field

The codes field encloses information related to the coding format, so

that their content depends on the coding format indicated in the HCDC

field. This field is not required for the ASCII coding format. For the

adaptive coding, it contains the symbols within the source file sorted

descendingly according to their frequency of occurrence. The length

of this field is Nc bytes. For Huffman coding, it enfolds the same

components as in standard Huffman compression algorithm.

iii. Valid codewords field

This field encloses the 16 valid codewords to be assigned for the most

frequently used characters. The length of this field is constant 16 Byte.

iv. Replacement field

www.manaraa.com

82

The replacement field contains information on the original codewords

and their replacements. The length of this field is 2Ri bytes for each

 loop. The maximum value of Ri is 16, if all most common 16

codewords are non-valid and need to be replaced with valid

codewords.

iv. Padding field

This field contains information on the number of padding bits (g)

during each compression loop from loop 1 to loop k. Thus, the length

of this field is k Bytes.

Taking into account all fields mentioned above, the length of the

HCDC(k) scheme compressed file header (Hl) can be expressed as:

1

8 16 2
k

l c i
i

H N R k

 (3.20)

The fields of the compressed file header and their individual lengths

in Bytes are shown in Figure (3.9).

www.manaraa.com

83

Figure (3.8) - The compressed file header of the HCDC(k) scheme.

Table (3.9)

HCDC(k) scheme compressed file header.

Field
Length
(Byte)

Description

HCDC 4 Name of the compression algorithm.

V 1 Version of the HCDC algorithm.

Nc 1 Number of symbols within the original text file.

F 1 Coding format (0 for ASCII coding, 1 for
Huffman coding, 2 for adaptive coding, etc.)

k 1 The number of compression loops.

HCDC field

(8 Byte)

Codes field

(Nc Byte)

Valid

codewords

field

(16 Byte)

Replacem

ents field

(2

k

i

iR
1

Byte)

Padding

field

(k Byte)

www.manaraa.com

84

Chapter Four
Experimental Results and Discussions

The HCDC(k) scheme is implemented using C++ programming

language. The resultant code allows a wide range of investigations

and experiments to be performed. However, it is only used to

compress a number of text files from standard corpora, namely,

Calgary corpus, Canterbury corpus, Artificial corpus, and Large

corpus, which are described in Appendix A.

At this stage, it is important to indicate that little efforts have been

taken to optimize the runtime of the compression/decompression

prototype code, therefore, in this work, we only compare and show

the results for the compression ratio of the scheme. However, this

scheme is classified as an asymmetric bit-level data compression

algorithm as the compression processing time is higher than the time

required for decompression.

In this thesis, results of five experiments are presented to evaluate

and compare the performance of the HCDC(k) scheme. In all

experiments, the HCDC(k) header taken into consideration, these five

experiments are described in the next sections.

www.manaraa.com

85

4.1 Experiment #1: Investigating the Effect of the Character
Coding Format

In this experiment we investigate the effect of the character coding

formats, namely, the ASCII and the adaptive coding formats on the

compression ratios achieved by the HCDC(k) scheme. They are

investigated using two text files of different sizes from the Calgary

corpus, namely, paper1 and book1. While paper1 file is characterized

by its small size (53161 Byte), book1 file is characterized by its large

size (768771 Byte).

 The results obtained for the entropy of the compressed binary file (E),

loop compression ratio (Ci) and the accumulated compression ratio

(Ck) for the text files paper1 and book1, are presented in Tables (4.1)

and (4.2), respectively.

The results obtained demonstrate that adaptive coding grants higher

compression ratios as compared to ASCII coding for all values of k

except for k=1, where they provide the same compression ratio,

because for both coding formats the 16 most common characters

were replaced with valid codewords. For k=1, the compression ratios

achieved by the HCDC(1) scheme (HCDC algorithm) over paper1 and

book1 files are 1.211 and 1.269, respectively.

www.manaraa.com

86

The tabulated results show that initially the entropy of the binary files

produced using adaptive coding are less than ASCII coding for both

text files; therefore, in general higher Ck are achieved. It can also be

seen that for adaptive coding the entropy of the compressed binary

file is increasing as the compression process is going on, while it is

decreasing for ASCII coding. However, using ASCII coding, the rate

of reduction in entropy is very small, thus the advantage it produces

is not enough to overcome the inflation in the compression ratio that

occurs during the particular compression stage (iteration).

Consequently, the accumulated compression ratio decreases after

few iterations (k=2).

For adaptive coding, although the entropy is increasing as the

compression process going on, the loop compression ratio remains

uninflated and the accumulated compression ratio increases steadily.

However, inflation begins after a number of iterations (4 to 6).

For paper1, the maximum compression ratio that can be achieved by

HCDC(k) scheme using ASCII coding is 1.234 at k=2, while adaptive

coding achieves a maximum compression ratio of 1.658 at k=4.

For book1, the HCDC(k) scheme achieves a maximum compression

www.manaraa.com

87

ratio of 1.309 at k=2 for ASCII coding, and 2.225 at k=4 using adaptive

coding. Furthermore, using ASCII coding, the iteration process

enhances the compression ratio achieved over paper1 and book1 text

files are 2% and 3%, respectively; while using adaptive coding

enhances the compression ratio by 40% and 75%. The results for the

accumulated compression ratio (Ck) in Tables (4.1) and (4.2) are

plotted in Figures (4.1) and (4.2), respectively.

Table (4.1) – Experiment #1

The HCDC(k) scheme compression ratio achieved for paper1
file using ASCII and adaptive character coding formats.

k

paper1

ASCII Coding Adaptive Coding

E C Ck E C Ck

1 0.999 1.211 1.211 0.835 1.211 1.211

2 0.999 1.019 1.234 0.757 1.180 1.429

3 0.998 0.943 1.163 0.846 1.109 1.585

4 0.990 0.946 1.101 0.929 1.046 1.658

5 0.984 0.947 1.042 0.984 1.000 1.657

6 0.974 0.954 0.995 1.000 0.977 1.619

7 0.971 0.957 0.952 0.998 0.958 1.551

www.manaraa.com

88

8 0.963 0.966 0.920 0.991 0.949 1.472

Shaded cells represent highest compression ratio

Table (4.2) – Experiment #1

The HCDC(k) scheme compression ratio achieved for book1 file
using ASCII and adaptive character coding formats.

k

book1

ASCII Coding Adaptive Coding

E C Ck E C Ck

1 0.999 1.269 1.269 0.793 1.269 1.269

2 0.999 1.031 1.309 0.649 1.246 1.582

3 0.998 0.948 1.240 0.727 1.184 1.873

4 0.992 0.940 1.166 0.824 1.119 2.096

5 0.983 0.945 1.102 0.914 1.056 2.213

6 0.974 0.955 1.053 0.976 1.005 2.225

7 0.965 0.964 1.015 0.999 0.972 2.163

8 0.962 0.969 0.983 0.998 0.952 2.060

www.manaraa.com

89

Shaded cells represent highest compression ratio

Figure (4.1) - Comparison of Ck for ASCII and adaptive coding

formats for paper1 file.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8
k

A
cc

u
m

u
la

ti
v
e

C
o
m

p
re

ss
io

n
 R

at
io

 C

k

ASCII Adaptive

www.manaraa.com

91

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8
k

A
cc

u
m

u
la

ti
v

e
C

o
m

p
re

ss
io

n
 R

at
io

 C

k

ASCII Adaptive

www.manaraa.com

91

Figure (4.2) - Comparison of Ck for ASCII and adaptive coding
formats for book1 file.

4.2. Experiment #2: Evaluating the Compression Ratio of the
HCDC (k) Scheme over a Number of Text Files from Standard
Corpora

In the following experiments, the coding format that will be used to

convert a text file into a binary file is the adaptive coding, because it

can provide higher compression ratio than ASCII coding. Experiment

#2 evaluates and compares the compression ratio of the HCDC(k)

scheme over a number of text files from standard corpora, namely,

Calgary Corpus, Canterbury Corpus, Artificial Corpus, and Large

Corpus. The results obtained are tabulated in Table (4.3). The results

include values of the following parameters:

i. Name and size of the text file.

ii. Number of characters within the text file (Nc).

iii. The compression ratio and the length of the compressed file

header for the HCDC(1) scheme, C1 and H1, respectively.

iv. The compression ratio and the length of the compressed file

header for the HCDC(k) scheme, Ck and Hk, respectively.

v. The enhancement ratio (Ek), which is calculated by:

www.manaraa.com

92

1

1

100k

k

C C
E

C

 (4.1)

where Ck and Cl are the compression ratios of the HCDC(k) scheme

after k loops and after the first loop (k=1), respectively.

The compression ratios of the HCDC(k) scheme achieved for text files

from the Calgary corpus are shown in Figure (4.3), while Figure (4.4)

shows the compression ratios achieved for text files from the

Canterbury, Artificial, and Large corpora.

It is also important to realize that the compression ratio of the

HCDC(1) scheme can be calculated analytically using Eqn. (3.19)

after calculating the character frequencies, and this can be used to

validate the accuracy of the coding process.

Table (4.3) – Experiment #2

Comparison between C1 and Ck for a number of text files from
the Calgary corpus.

File

Name

File
Size

(Byte)
Nc

HCDC(1)
scheme

HCDC(k)
scheme Er %

C1 H1 Ck Hk

www.manaraa.com

93

Calgary corpus

1 Bib
11126

1
81 1.177 141

1.428
(4)

225 21

2 book1
76877

1
82 1.269 144

2.225
(6)

290 75

3 book2
61085

6
96 1.247 157

1.971
(5)

272 58

4 paper1 53161 95 1.211 155
1.658

(4)
239 37

5 paper2 82199 91 1.265 153
2.178(

6)
299 72

6 paper3 46526 84 1.261 145
2.112

(5)
260 67

7 paper4 13286 80 1.257 142
2.118

(6)
288 68

8 paper5 11954 91 1.218 152
1.737

(5)
267 43

9 paper6 38105 93 1.203 153
1.597

(4)
237 33

Canterbury corpus

10
alice29.t

xt
15208

9
74 1.258 135

2.097
(5)

250 67

11
asyoulik.t

xt
12517

9
68 1.230 129

1.825
(5)

244 48

www.manaraa.com

94

12 lcet10.txt
42675

4
84 1.252 145

2.009
(5)

260 60

13
plrabn12.

txt
48186

1
81 1.269 143

2.235
(6)

289 76

Artificial corpus

14 aaa.txt
10000

0
1 1.400 33 7.5 (6) 43 436

15
alphabet.

txt
10000

0
26 1.138 86

1.425
(4)

170 25

16
random.t

xt
10000

0
64 0.969 121

0.969
(1)

112 0

Large corpus

16 bible.txt
40473

90
63 1.294 125

2.656
(6)

271 105

17
world192

.txt
24734

00
94 1.206 154

1.621
(4)

238 34

www.manaraa.com

95

Figure (4.3) – Comparison between C1 and Ck for a number of

text files from the Calgary corpus.

0.0

0.5

1.0

1.5

2.0

2.5

B
ib

b
o
o
k
1

b
o
o
k
2

p
a
p
e
r1

p
a
p
e
r2

p
a
p
e
r3

p
a
p
e
r4

p
a
p
e
r5

p
a
p
e
r6

File Name

C
o
m

p
re

ss
io

n
 R

a
ti
o

 .

k =4

k =6

k =5

k =4

k =6 k =5 k =6

k =5
k =4

HCDC(1) HCDC(k)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

al
ic

e2
9

.t
x

t

as
y

o
u
li
k

.t
x

t

lc
et

1
0

.t
x

t

p
lr

ab
n

1
2

.t
x

t

aa
a.

tx
t

al
p

h
ab

et
.t
x

t

ra
n

d
o
m

.t
x

t

b
ib

le
.t
x

t

w
o

rl
d

1
9
2

.t
x

t

File Name

C
o

m
p

re
ss

io
n

n
 R

at
io

 .

k =5
k =5

k =5
k =6

k =3

k =4

k =1

k =6

k =4

HCDC(1) HCDC(k)

www.manaraa.com

96

Figure (4.4) - Comparison between C1 and Ck for a number of
text files from the Canterbury, Artificial, and Large
corpora .

4.3.Experiment # 3: Comparing the Compression Ratio of the
HCDC(k) Scheme with a Number of Data Compression
Algorithms

In Table (4.4), the compression power of the HCDC(k) scheme is

compared with a number of statistical and bit-level data compression

algorithms, such as: the Huffman coding (HU), the fixed-length

Hamming (FLH), and the Huffman coding following the fixed-length

Hamming (HF) [Sha 04], the ACW(n,s) scheme using adaptive coding

(ACW-A), and the ACW(n,s) scheme using Huffman coding (ACW-H)

[Hay 08]. The results show that the HCDC(k) algorithm achieves high

compression ratios with respect to other algorithms. The results are

also presented in Figure (4.5).

www.manaraa.com

97

Table (4.4) – Experiment #3

Comparison between the compression ratio of the HCDC(k)
scheme and various statistical and bit-level data compression

algorithms.

Algorithm Book1 Paper1

HU* 1.72 1.60

FLH* 1.14 1.14

HF* 1.71 1.57

ACW–A** 1.674 (14) 1.542 (11)

ACW–H** 2.673 (11) 2.431 (11)

HCDC(1) 1.27 (1) 1.21 (1)

HCDC(k) 2.225 (6) 1.658 (4)

* HU: Huffman coding, FLH: Fixed-Length Hamming, HF:
HU following FLH [Sha 04].

** ACW(n,s): Adaptive Character Word length algorithm [Hay
08].

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HU FLH HF ACW–A ACW–H HCDC(1) HCDC(k)

Algorithm

C
o

m
p

re
ss

io
n

 R
at

io

 .

book1 paper1

n =14
n =11

n =11

n =11

k =1
k =1

k =6

k =4

www.manaraa.com

98

Figure (4.5) - Comparison between the compression ratio of the

HCDC(k) scheme and various statistical and bit-level data

compression algorithms.

4.4. Experiment #4: Comparing the Compression Ratio of the
HCDC (k) Scheme with Adaptive Algorithms

Table (4.5) compares the compression ratio of the new scheme with

three adaptive algorithms, namely, the Unix compact utility that is

based on adaptive Huffman (AH), the greedy adaptive Fano coding

(AF) [Rue 06], the ACW(n,s) scheme using adaptive coding (ACW-

A), and the ACW(n,s) scheme using Huffman coding (ACW-H) [Hay

08]. Once again the HCDC(k) achieve a competitive compression

ratio with the other algorithms.

The compression ratio of the new scheme is higher than the

compression ratio of AH, AF, and the ACW-A algorithms by 40 to 50

percent. But at the same time it is less than the compression ratio

achieved by the ACW-H scheme by 4 to 6 percent, this is because

the ACW-H scheme itself consists of two compression algorithms, the

ACW(n,s) followed by Huffman coding [Hay 08]. This demonstrates

the excellent performance of the HCDC(k) scheme as it provides

www.manaraa.com

99

almost the same compression ratio achieved by using two

compression algorithms in a successive way. The results are also

shown in graphical form in Figure (4.6).

Table (4.5)

Comparison of the compression ratio of HCDC(k) scheme with
various adaptive data compression algorithms.

Corpu
s

File
Name

AH1 AF1

ACW (n,s)
scheme2

HCDC(
k)

Adaptiv
e

Huffma
n

C
a
lg

a
ry

 c
o
rp

u
s

Bib
1.526 1.524

1.537
(11)

2.330
(11)

1.428
(4)

book1
1.753 1.750

1.674
(14)

2.673
(11)

2.225
(6)

book2
1.658 1.653

1.545
(11)

2.530
(11)

1.971
(5)

paper1
1.587 1.588

1.542
(11)

2.431
(11)

1.658
(4)

C
a
n
te

rb
u
ry

 c
o
rp

u
s

alice29
1.753 1.746

1.656
(14)

2.643
(11)

2.097
(5)

Asyoulik
1.648 1.645

1.648
(14)

2.516
(11)

1.825
(5)

lcet10
1.718 1.717

1.604
(14)

2.599
(11)

2.009
(5)

www.manaraa.com

111

Figure (4.6) - Comparison between the compression ratio of the

HCDC(k) scheme with various adaptive

compression algorithms for a number of text files

from the Calgary and Canterbury corpora.

Comparison of the compression ratio (C) of HCDC(k) scheme and

various adaptive compression algorithms.

0

0.5

1

1.5

2

2.5

3

bi
b

bo
ok

1

bo
ok

2

pa
pe

r1

al
ic
e2

9.
tx
t

as
yo

ul
ik
.tx

t

lc
et1

0.
tx

t

pl
ra

bn
12

.tx
t

File Name

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

 C
)

AH
AF
ACW (n,s) - Adaptive
ACW (n,s) - Huffman
HCDC(k)

Calagary Corpus
Canterbury corpus

 plrabn12
1.769 1.766

1.750
(14)

2.667
(11)

2.255
(6)

AH (Adaptive Huffman): Unix compact utility.

AF (Adaptive Fano): Greedy adaptive Fano coding.

1 Results for AH , AF are from [Rue 06].

2 Results for the ACW-A and ACW-H are from [Hay 08].

www.manaraa.com

111

4.5. Experiment #5: Comparing Compression Ratio of the
HCDC (k) Scheme with a Number of Widely-Used Programs

In this experiment the performance of the HCDC(k) scheme and a

number of well-known and widely-used data compression programs,

is compared. The performance is compared in terms of the coding

rate (Cr) in bpc for six text files. These are: Bib, book1, book2, paper1,

paper2, from the Calgary corpus and alice29 from the Canterbury

corpus. The coding rates achieved for these text files are tabulated in

Table (4.6). The results obtained for book 1 file are also presented in

Figures (4.7).

There are no special reasons for selecting these text files and for

comparing the performance in terms of coding rate, apart from the

fact that such comparison were found in many references in the

literature.

It can be easily seen from the results obtained that the coding rates

achieved by the HCDC(k) scheme with adaptive coding for different

text files are competitive to the coding rates achieved by a number of

standard programs. This may be considered as an excellent

performance as most of these programs utilize a number of data

compression algorithms work in successive forms to achieve such

www.manaraa.com

112

 coding rates. For example, for the text file book1, the best coding rate

achieved is 2.120 bpc by the rkive-mt3 program, which is based on a

prediction with partial matching (PPM) approach. However, the

HCDC(k) scheme achieves a coding rate of 2.753 bpc at k=6.

Table (4.6) – Experiment #5

Comparison of the coding rate (Cr) in bpc between the HCDC(k)
scheme and various standard programs.

Programs
Typ

e
Versio

n

File Name

Bib
boo
k1

boo
k2

pap
er1

pap
er2

alice
29

compress LZ 4.0 3.35
0

3.46
0

3.28
0

3.77
0

3.52
0

-

gzip LZ 1.2.3 2.52
0

3.26
0

2.71
0

2.80
0

2.90
0

-

comp-2-o-4 PP
M

Trial
V.

2.02
0

2.35
0

2.08
0

2.48
0

2.45
0

-

DD PP
M

Trail
V.

2.53
0

2.69
0

2.39
0

3.08
0

2.85
0

-

compress LZ 4.3d - 3.48
6

- - - 3.27
0

pkzip LZ 2.04e - 3.28
8

- - - 2.88
4

gzip-9 LZ 1.2.4 - 3.25
0

- - - 2.84
8

szip-b41-o0 BW 1.05Xf - 2.34
5

- - - 2.23
9

www.manaraa.com

113

ha a2 PP
M

0.98 - 2.45
3

- - - 2.17
1

boa-m15 PP
M

0.58b - 2.20
4

- - - 2.06
1

rkive-mt3 PP
M

1.91b
1

- 2.12
0

- - - 2.05
5

neural small NN P5 - 2.50
8

- - - 2.30
1

neural large
NN P6 - 2.28

3
- - - 2.12

9

ACW-A1
Bit-
Lev
el

Trial
V.

4.55
4

(11)

4.18
2

(14)

4.53
1

(11)

4.54
0

(11)

4.26
6

(14)

4.22
7

(14)

ACW-H1
Bit-
Lev
el

Trial
V.

3.00
4

(11)

2.61
9

(11)

2.76
7

(11)

2.88
0

(11)

2.66
2

(11)

2.64
9

(11)

www.manaraa.com

114

HCDC(k)
Bit-
Lev
el

Trial
V.

4.90
1 (4)

3.14
6

(6)

3.55
1 (5)

4.22
1 (4)

3.21
3 (6)

3.33
8 (5)

1 Results for the ACW-A and ACW-H are from [Hay 08].

Figure (4.7) - Comparison of the coding rate (Cr) in bpc between

the HCDC(k) and various standard programs for
book1 file from the Calgary corpus.

Comparison of the coding rate (Cr) in bps between the HCDC(k) and

various standard programs for Book1 file

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

co
m

p
re

ss

g
zi

p

co
m

p
-2

-o
-4

D
D

co
m

p
re

ss

p
k

zi
p

g
zi

p
-9

sz
ip

-b
4
1
-o

0

h
a

 a
2

b
o

a
-m

1
5

rk
iv

e-
m

t3

n
eu

ra
l

sm
a
ll

n
eu

ra
l

la
rg

e

A
C

W
(n

,s
)

(A
d

a
p

ti
v

e
co

d
in

g
)

A
C

W
(n

,s
)

(H
u

ff
m

a
n

 c
o

d
in

g
)

H
C

D
C

(k
)

Program Name

C
o

d
in

g
 R

a
te

 (
C

r)

www.manaraa.com

115

Chapter Five
Conclusions and Recommendations for Future Work

5.1. Conclusions

The main conclusions of this thesis are:

1. An efficient and adaptive lossless bit-level text compression

scheme that is based on the error correcting Hamming Code

Data Compression (HCDC) algorithm was developed. The new

scheme consists of six main steps, in which steps 2 to 5 are

applied repetitively until inflation is detected. Therefore, it is

referred to as HCDC(k) scheme, where k refers to the number of

iterations or loops being performed before an inflation is detected.

2. Using adaptive coding instead of ASCII coding in converting a

text file into a binary sequence enhances the performance of the

HCDC(k) scheme. This is because adaptive coding yields low

entropy binary sequence so that higher compression ratio is

granted. It has been recognized that the entropy of the binary

sequence increases as the compression process goes on (i.e., k

increases) until the entropy reaches or becomes close to unity.

Therefore, the compression ratio is either saturated or inflated.

For example, as demonstrated in Experiment #1, for the text files

www.manaraa.com

116

 paper1 and book1 from the Calgary corpus, due to the use of

adaptive coding, the compression ratio increases by 34% (from

1.234(2) to 1.656(4)) and by 70% (from 1.309(2) to 2.225(6)),

respectively.

However, this is usually at the cost of increasing the processing

time, as the values of k at which maximum compression ratio is

achieved are increased.

3. The repetitive approach implemented in the HCDC(k) scheme

enhances the compression ratio of the HCDC algorithm by more

than 50%, as it has been demonstrated in Experiment #2.

However, the maximum value of k that gives maximum

compression ratio is in the range of 4 to 6 for a wide range of text

files from different standard corpora. The results showed that the

range of the improvement achieved by the HCDC(k) scheme

depends on the content and size of the text file.

4. As demonstrated by Experiments #3 and #4, the HCDC(k)

scheme demonstrated an excellent performance as compared to

the most widely used data compression algorithms, such as

Huffman coding (HU), the fixed-length Hamming (FLH), and the

Huffman coding following the fixed-length Hamming (HF), the

www.manaraa.com

117

5. Adaptive Character Wordlength (ACW(n,s)) scheme using

adaptive coding (ACW-A), adaptive Huffman (AH), the greedy

adaptive Fano coding (AF). However, it provides less

compression ratio as compared to the ACW(n,s) scheme using

Huffman coding (ACW-H), because this scheme is in fact two

compression algorithms (Huffman and ACW(n,s)) performed

consecutively.

5. Experiment #5 demonstrated that The HCDC(k) scheme

provides an excellent, comparable, and competitive performance

to the most widely used state-of-the-art software of different

models.

6. Finally, it is believed that the HCDC(k) scheme has a great

potential that can be utilized to increase its compression power.

In addition, the HCDC(k) scheme can be used as a post

processing technique to increase the compression ratio of

statistical lossless data compression algorithms, such as

Shanon-Fano coding, Huffman coding, arithmetic coding, a

combination of these algorithms, or any modified form of them.

www.manaraa.com

118

5.2. Recommendations for Future Work

The main recommendations for future work are:

1. Develop more efficient text-to-binary coding formats to be used

with the HCDC(k) scheme.

2. Evaluate the performance of the HCDC(k) scheme in

compressing other types of files, such as standstill images,

multimedia files, etc.

3. Use the HCDC(k) scheme as a post-compression stage to other

data compression algorithms, in particular, bit-level data

compression algorithms.

4. Develop an optimized version of the code to compare its runtime

with other compression algorithms and state-of-the-art software

and compare the compression and the decompression

processing runtimes.

5. Modify the core of HCDC algorithm itself in some way to provide

higher compression ratio.

www.manaraa.com

119

References

[Adi 07] J. Adiego, G. Navarro, and P. de la Fuente, "Using
Structural Contexts to Compress Semi-Structured
Text Collections", Information Processing and
Management, Vol. 43, Issue 3, pp. 769–790, 2007.

[Adi 06] J. Adiego and P. Feunte, "On the Use of Words as
Source Alphabet Symbols in PPM", Proceedings
of the IEEE Data Compression Conference
(DCC’06), IEEE CS Press, pp. 435-441, 2006.

[Bah 08a] Hussein Al-Bahadili, "A Novel Lossless Data
Compression Scheme Based on the Error
Correcting Hamming Codes", Journal of
Computers and Mathematics with Applications,
Vol. 56, Issue 1, pp. 143-150, 2008.

[Bah 08b] Hussein Al-Bahadili and Shakir M. Hussain, "An
Adaptive Character Wordlength Algorithm for
Data Compression", Journal of Computers &
Mathematics with Applications, Vol. 55, Issue 6,
pp. 1250-1256, 2008.

[Bah 07a] Hussein Al-Bahadili and Ahmad Rababa’a, “An
Adaptive Bit-Level Text Compression Scheme
Based on the HCDC Algorithm”, Proceedings of
the Musharaka International-Conference on
Communications, Networking and Information
Technology (MIC-CNIT2007), Amman, Jordan, 6-
8 Dec 2007.

[Bel 94] T. C. Bell and I. Witten, “The Relationship between
Greedy Parsing and Symbol Wise Text
Compression”, Journal of ACM, Vol. 41, No. 4,
1994.

[Bel 90] T. C. Bell, J. C. Cleary, and I. H. Witten, "Text
Compression", Prentice-Hall, 1990.

www.manaraa.com

111

[Bri 07] N. J. Brittian, M. R. El-Sakka, "Grayscale True
Two-Dimensional Dictionary-Based Image
Compression", Journal of Visual Communication
and Image Representation, Vol. 18, pp. 35-44,
2007.

[Bri 05] N. R. Brisaboa, A. Farina, G. Navarro and J.
Param´a, "Efficiently Decodable and Searchable
Natural Language Adaptive Compression", ACM
1-59593-034, August 2005.

[Cai 04] G. Caire, S. Shamai, and S. Verdu, “Noiseless
Data Compression with Low-Density Parity-Check
Codes”, in Discrete Mathematics and Theoretical
Computer Science, AMS (2004).

[Chu 02] A. Chu, “LZAC Lossless Data Compression”, In
Proceedings of the Data Compression Conference
(DCC’02), IEEE, 2002.

[Con 06] E. Conley and S. Klein, ”Compression of
Multilingual Aligned Texts”, In Proceedings of the
Data Compression Conference, IEEE Computer
Society, 2006.

[Fre 04] V. Freschi and A. Balliol, "Longest Common
Subsequence Between Run-Length-Encoded
String: a New Algorithm with Improved
Parallelism", Information Processing letters, Vol.
90, pp. 167-173, 2004.

[Gal 07] L. Galambos, J. Lansky, M. Zemlicka, and K.
Chernik, "Compression of Semi-Structured
Documents", International Journal of Information
Technology, Vol. 4, No. 1, pp. 11-17, 2007.

[Gal 78] R. G. Gallager, "Variations on a Theme by
Huffman", IEEE Trans. on Info. Theory, Vol. 24,
No. 6, pp. 668-674, November 1978.

www.manaraa.com

111

[Gil 06] J. Gilbert and D. Abrahamson, "Adaptive Object
Code Compression", ACM 1-59, 593-543, October
2006.

[Has 03] R. Hashemian, “Direct Huffman Coding And
Decoding Using The Table Of Code-Lengths”, In
Proceedings of the International Conference on
Information Technology, IEEE, 2003.

[Hay 08] Wiam Y. Al_Hayek, “Development and
Performance Evaluation of a Bit-Level Text
Compression Scheme Based on the Adaptive
Character Wordlength Algorithm”, M.Sc. Thesis,
Department of Computer Science, Graduate
College of Computing Studies, Amman Arab
University for Graduate Studies, Jordan, 2008

[How 94] P. G. Howard and J. S. Vitter, "Arithmetic Coding
for Data Compression", Proceedings of the IEEE,
Vol. 82, No. 6, pp. 857-865, 1994.

[Huf 52] D. A. Huffman, "A Method for the Construction of
Minimum-Redundancy Codes", Proceedings of
IRE, Vol. 40, No. 9, pp. 1098-1101, 1952.

[Isa 01]

R. Y. K. Isal and A. Moffat, "Word-Based Block-
Sorting Text Compression", Proceedings of the
24th Australasian Computer Science Conference,
pp. 92–99, 2001.

[Jar 06] A.. Jaradat, M. Irshid and T. Nassar,” A File
Splitting Technique for Reducing the entropy of
text files”, Int. Journal of Information Technology
,Vol. 3, No. 2, 2006.

[Jar 01] A. Jaradat and M. Irshid, “A Simple Binary Run-
Length Compression Technique For Nonbinary
Sources Based On Source Mapping”, Active and
Passive Elec. Comp., Vol. 24, pp. 211-221, 2001.

www.manaraa.com

112

[Kim 05] N. Kimura and S.Latifi, "A Survey on Data
Compression in Wireless Sensor Networks",
Proceedings of the IEEE International Conference
on Information Technology: Coding and
Computing (ITCC’05), pp. 8-13, 2005.

[Kle 00] S. T. Klein, "Skeleton Trees for Efficient Decoding
of Huffman Encoded Texts", Information Retrieval,
Vol. 3, pp. 7–23, 2000.

[Knu 85] D. E. Knuth, "Dynamic Huffman Coding", Journal
of Algorithms, Vol. 6, pp. 163-180, 1985.

[Lan 06b] J. Lansky and M. Zemlicka, "Compression of Small
Text Files Using Syllables", Proceedings of the
IEEE Data Compression Conference (DCC’06),
IEEE CS Press, pp. 458-464, 2006.

[Lan 05] J. Lansky and M. Zemlicka, "Text Compression:
Syllables", Proceedings of the Dateso 2005
Annual International Workshop on Databases,
Texts, Specifications and Objects (eds. K. Richta,
V. Snasel, and J. Pokorny), Vol. 129, pp. 32-45,
2005.

[Lel 87] D. A. Lelewer and D. S. Hirschberg , "Data
Compression", ACM Computing Surveys, Vol. 19,
No. 3, pp. 261-296, 1987.

[Liu 05] Y. K. Liu and B. Zalik, "An Efficient Chain Code
with Huffman Coding", Pattern Recognition, Vol.
38, pp. 553-557, 2005.

[Mah 00] M. V. Mahoney, "Fast Text Compression with
Neural Networks", Proceedings of the 13th
International Florida Artificial Intelligence
Research Society Conference, pp. 230-234, 2000.

[Mof 05] A. Mofat and R. Y. Isal, "Word-Based Text
Compression Using the Burrows-Wheeler
Transform", Information Processing and
Management, Vol. 41, pp. 1175-1192, 2005.

www.manaraa.com

113

[Mof 98] A. Moffat, R. M. Neal, I. H. Witten, "Arithmetic
Coding Revisited", ACM Transactions on
Information Systems, Vol. 16, pp. 256-294, July
1998.

[Nel 89] M. Nelson , "LZW Data Compression", Dr Dobb’s
Journal, Vol. 14, No. 10, pp. 62-75, 1989.

[Nof 07] S. Nofal, "Bit-Level Text Compression",
Proceedings of the First International Conference
on Digital Communications and Computer
Applications, pp. 486-488, 2007.

[Pan 00] M. K. Pandya, "Data Compression: Efficiency of
Varied Compression Techniques", Formal Report,
University of Brunel, UK, 2000.

[Pla 06] H. Plantinga, "An Asymmetric, Semi-Adaptive Text
Compression Algorithm", IEEE Data
Compression, 2006.

[Rei 06a] S. Rein, C. Guhmann, F. Fitzek, "Compression of
Short Text on Embedded Systems", Journal of
Computers, Vol. 1, No. 6, 2006.

[Rei 06b] S. Rein, C. G¨uhmann and F. Fitzek, "Low
Complexity Compression of Short Messages",
Proceedings of the IEEE Data Compression
Conference (DCC’06), IEEE CS Press, pp. 123-
132, 2006.

[Rob 06] L. Robert and R. Nadarajan, “New Algorithms for
Random Access Text Compression”, Proceedings
of the international conference, IEEE, pp. 104-111,
2006.

[Rue 01] L. Rueda and b. John, ”Enhanced Static Fano
Coding”, In the Int. Conference, IEEE, Vol. 4, pp.
2163–2169, 2001.

[Sal 04] D. Salomon, Data Compression: The Complete
Reference, Third Edition, Springer-Verlag, 2004.

www.manaraa.com

114

[Sha 06] D. Shapira and A. Daptardar, "Adapting the Knuth–
Morris–Pratt Algorithm for Pattern Matching in
Huffman Encoded Texts", Information Processing
and Management, Vol. 42, pp. 429–439, 2006.

[Sha 04] A. A. Sharieh, "An Enhancement of Huffman
Coding for the Compression of Multimedia Files ",
Transactions of Engineering Computing and
Technology, Vol. 3, No. 1, pp. 303-305, 2004.

[Sha 51] C. E. Shannon,” Prediction and Entropy of Printed
English”, The Bell System Technical Journal,
1951.

[Tan 03] Amdrew Tanenbaum, “Computer Networks”,
Prentice Hall, 2003.

[Vit 89] J. S. Vitter , "Dynamic Huffman Coding", Journal of
ACM, Vol. 15, No. 2, pp. 158-167, 1989.

[Wit 04] I. H. Witten, ""Adaptive Text Mining: Inferring
Structure from Sequences", Journal of Discrete
Algorithms, Vol. 2, No. 2, pp. 137-159, 2004.

[Wit 94] I. H. Witten, A. Moffat, and T. Bell, "Managing
Gigabytes: Compressing and Indexing Documents
and Images", Van Nostrand Reinhold, 1994.

[Wit 87] I. H. Witten, R. M. Neal , and J. C. Cleary ,
"Arithmetic Coding for Data Compression",
Communications of the ACM, Computing Practice,
Vol. 30, No. 6, pp. 520-540, 1987.

[Xie 03]

Y. Xie, W. Wolfe, and H. Lekatsas, "Code
Compression Using Variable-to-Fixed Coding
Based on Arithmetic Coding", In Proceedings of
the Data Compression Conference, IEEE
Computer Society, 2003.

[Ziv 78] J. ZIV and A. Lempel, "Compression of Individual
Sequence Via Variable-Rate Coding", IEEE
Transaction on Information Theory, Vol. 4, No. 5,
pp. 530-536, 1978.

www.manaraa.com

115

[Ziv 77] J. ZIV and A. Lempel ,"A Universal Algorithm for
Sequential Data Compression", IEEE Transaction
on Information Theory, Vol. 23, No. 3, pp. 337-343,
1977.

www.manaraa.com

116

Appendices

Appendix A

Compression Corpora

In order to evaluate the performance of various compression

schemes, standard corpora are usually used, these include:

i. Calgary Corpus

ii. Canterbury Corpus

iii. Artificial Corpus

iv. Large Corpus

v. Miscellaneous Corpus

This appendix provides brief descriptions of the above corpora and

their constituent files.

A.1 Calgary Corpus

The Calgary Corpus is the most referenced corpus in the data

compression field, especially, for text compression and is the de facto

standard for lossless compression evaluation. The corpus was

founded in 1987 by Ian Witten, Timothy Bell and John Cleary [Wit 87,

Bel 89, Bel 90]. There are two versions of this corpus:

www.manaraa.com

117

1. Large Calgary corpus which consists of 18 files (bib, book1,

book2, geo, news, obj1, obj2, paper1, paper2, paper3, paper4,

paper5, paper6, pic, progc, progl, progp and trans).

2. Standard Calgary Corpus which consists of 14 files (all files

above except paper3, paper4, paper5 and paper6).

Nine different types of text are represented, and to confirm that the

performance of schemes is consistent for any given type, many of the

types have more than one representative. Normal English, both

fiction and non-fiction, is represented by two books and six papers

(labeled book1, book2, paper1, paper2, paper3, paper4, paper5,

paper6). More unusual styles of English writing are found in a

bibliography (bib) and a batch of unedited news articles (news).

Three computer programs represent artificial languages (progc, progl,

progp). A transcript of a terminal session (trans) is included to indicate

the increase in speed that could be achieved by applying compression

to a slow line to a terminal. All of the files mentioned so far use ASCII

encoding. Some non-ASCII files are also included: two files of

executable code (obj1, obj2), some geophysical data (geo), and a bit-

map black and white picture (pic).

www.manaraa.com

118

The file geo is particularly difficult to compress because it contains a

wide range of data values, while the file pic is highly compressible

because of large amounts of white space in the picture, represented

by long runs of zeros. More details of the individual texts are given in

[Bel 90]. In addition, results of compression experiments on these

texts are given in [Wit 87, Bel 89].

www.manaraa.com

119

Table (A.1) - Calgary Corpus.

File

Name
Size

(Byte)
Contents

1 Bib 111261 Structured text (bibliography)

2 Book1 768771 Text

3 Book2 610856 Formatted text, scientific

4 Geo 102400 Geophysical data

5 News 377109 Formatted text, script with news

6
Obj1

21504
Program code (object file), executable
machine code

7 Obj2 246814
Program code (object file), executable
machine code

8 Paper1 53161 Formatted text, scientific

9 Paper2 82199 Formatted text, scientific

10 Paper3 46526 Formatted text, scientific

11 Paper4 13286 Formatted text, scientific

12 Paper5 11954 Formatted text, scientific

13 Paper6 38105 Formatted text, scientific

14 Pic 513216 Image data (black and white)

15 Progc 39611 Source code

16
Progl 716

46
Source code

17
Progp 493

79
Source code

www.manaraa.com

121

18
Trans 936

95
Transcript terminal data

A.2 Canterbury Corpus

The Canterbury collection is the main benchmark for comparing

compression methods. It was developed in 1997 as an improved

version of the Calgary Corpus. It consists of 11 files. The files were

chosen because their results on existing compression algorithms are

“typical”, and so it is hoped this will also be true for new methods.

Ross Arnold and Tim Bell [Arn 97] explain how the files were chosen,

and why it is difficult to find “typical” files. This collection will not be

changed so that it can be used as a benchmark in future.

Table (A.2) - Canterbury Corpus.

File Name
Size

(Byte)
Contents

1 Alice29.txt 152089 English text

2
Asyoulik.t
xt

125179 Shakespeare

3 Cp.html 24603 HTML source

4 Fields.c 11150 C source

5
Grammar.l
sp

3721 LISP source

6
Kennedy.x
ls

102974
4

Excel Spreadsheet

7 Lcet10.txt 426754 Technical writing

www.manaraa.com

121

8
Plrabn12.t
xt

481861 Poetry

9 Ptt5 513216 CCITT test set

10 Sum 38240 SPARC Executable

11 Xargs.1 4227 GNU manual page

A.3 Artificial Corpus

The Artificial corpus is a collection that contains 4 files for which the

compression methods may exhibit pathological or worst-case

behavior - files containing little or no repetition (random.txt), files

containing large amounts of repetition (alphabet.txt), or very small

files (a.txt).

As such, “average” results for this collection will have little or no

relevance, as the data files have been designed to detect outliers.

Similarly, times for “trivial” files will be negligible, and should not be

reported.

New files can be added to this collection, so the overall average for

the collection should not be reported as a benchmark. Results on this

corpus should be reported for individual files, or a subset should be

identified. Existing files in the collection will not be changed or

removed.

www.manaraa.com

122

Table (A.3) - Artificial Corpus.

File Name
Size

(Byte)
Contents

1 a.txt 1 The letter “a”.

2
aaa.txt 10000

0
The letter “a”, repeated 100,000
times.

3
alphabet
.txt

10000
0

Enough repetitions of the alphabet to
fill 100,000 characters

4
random.t
xt

10000
0

100,000 characters, randomly
selected from [a-z, A-Z, 0-9] (alphabet
size 64)

A.4 Large Corpus

The Large Corpus is a collection of relatively 3 large files. While most

compression methods can be evaluated satisfactorily on smaller files,

some require very large amounts of data to get good compression,

and some are so fast that the larger size makes speed measurement

more reliable. New files can be added to this collection, so the overall

average for the collection should not be reported as a benchmark.

Results on this corpus should be reported for individual files, or a

subset should be identified. Existing files in the collection will not be

changed or removed.

www.manaraa.com

123

Table (A.4) - Large Corpus.

File

Name
Size

(Byte)
Contents

1 E.coli 463869
0

Complete genome of the E. Coli
bacterium (E.coli).

2 bible.txt 404739
2

The King James version of the bible
(bible).

3 world192.
txt

 247340
0

The CIA world fact book (world).

A.5 Miscellaneous Corpus

This is a collection of "miscellaneous" files that is designed to be

added to by researchers and others wishing to publish compression

results using their own files. New files can be added to this collection,

so the overall average for the collection should not be reported as a

benchmark.

Results on this corpus should be reported for individual files, or a

subset should be identified. Existing files in the collection will not be

changed or removed. There is only one file in this corpus till now.

Table (A.5) - The Miscellaneous Corpus.

File Name Size

(Byte)
Contents

1
pi.txt 100000

00
The first million digits of pi.

